
Correct-by-Construction Control Adaptation against Sensing, Model, and Information
Uncertainty

by

Kwesi Joe Rutledge

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

in the University of Michigan
2022

Doctoral Committee:

Associate Professor Necmiye Özay, Chair
Associate Professor Dmitry Berenson
Professor Jessy Grizzle
Professor Ilya Kolmanovsky
Professor Hadas Kress-Gazit, Cornell University

Kwesi Joe Rutledge

krutledg@umich.edu

ORCID iD: 0000-0001-8231-1184

© Kwesi Joe Rutledge 2022

DEDICATION

This dissertation is dedicated to my grandmothers, Lois Gray and Jacqueline Rutledge. They were
both teachers whose curiosity and love of learning travelled all the way down the family tree to
their grandchildren’s house in New Jersey.

ii

ACKNOWLEDGMENTS

There are a great number of people that helped me get to this point and I apologize if I accidentally
omit any one’s name. Despite any omissions, I appreciate every one of you.

First and foremost, I must acknowledge my advisor Necmiye Özay for her steadfast support,
honesty, and excitement over the years as my advisor during this PhD. She is a phenomenal ex-
ample of a great problem solver and human being. I attempted to channel these and many other
qualities as I struggled to solve difficult control problems or better communicate the importance
of our research. I will never forget her humility despite her amazing depth of knowledge and the
intense work ethic that has earned her so many great results.

Secondly, I would like to thank my other committee members, Profs. Berenson, Grizzle, Kress-
Gazit and Kolmanovsky. Each of the committee members offered advice on matters related to my
research, professional development, self-care or much more during the process of finishing this
dissertation. I appreciate their helpful observations and honesty at all of the points along the way.

My colleagues in the Ozay group also deserve many thanks. This research group is special
because, although we can seemingly work on very different areas of control, we are still willing to
head into ‘unfamiliar’ territory and learn about another group-member’s field. The willingness to
go into unfamiliar territory was demonstrated by the eagerness that many of the participants in our
lab reading group and I hope to find something similar in the near future. Additionally, some of my
colleagues that have graduated (including Yunus Sahin and Petter Nilsson) helped teach me many
of the tools that the group specialized in. Their helpful board conversations, GitHub repositories
and research papers were invaluable. I’m also thankful for the many thought-provoking discussions
with Glen, Zhe, Zexiang, Andrew, Daphna, Philippe, Yuhang, and Xingze in the group. Although
those discussions did not always result in a paper, they broadened my understanding of the field of
control and robotics in a way that I really appreciated.

I also must acknowledge the friends that I’ve made outside of the research lab. Through my time
as an executive board member of the Graduate Society of Black Engineers and Scientists (formerly
SMES-G) and my tenure helping out on the Electrical and Computer Engineering Graduate Student
Council, I’ve met many fun and inspiring people that helped enable great things at the University of
Michigan. I won’t be able to list all of the individuals here, but some people that I was honored to
have met were Eva Mungai, Gabrielle Dotson, Yves Nazon, Nosakhare Edoimioya, Nathan Louis,
Uriah Israel, Jonathan Michaux, Raghav Muralidharan, and Daniel Spatcher.

iii

Special thanks to my family and oldest friends for offering support whenever they called. To
Gabriel Aguilera, thanks for dragging me out to a concert every once in a while to make sure I
remembered why I love them so much. To John Brewer, thank you for remembering all of my
random PhD terms, dates and goals despite your busy executive job. To Mr. Scott and Mrs. K,
thank you for always making time to talk/eat with me when I needed it. To my parents, thank you
for teaching me the value in deliberate practice and how to exceed my own expectations. I hope
that I have made you proud.

Last, but not least, I would like to acknowledge my partner Nailah Seale. She bore with me
during many trying deadline seasons and also my attempts to juggle work-life and personal-life
throughout all of the years of my PhD. Her sacrifices did not go unnoticed and I would not have
been able to accomplish all of what I did without her understanding and help.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF APPENDICES . xii

LIST OF ACRONYMS . xiii

ABSTRACT . xiv

CHAPTER

1 Introduction . 1

1.1 Existing Gaps . 3
1.2 Literature Review . 4

1.2.1 Real-World Limitations of CPSs . 4
1.2.2 Adaptive Control . 8
1.2.3 Formal Methods . 11

1.3 Summary of Contributions . 13

2 Mathematical Preliminaries . 16

2.1 Alphabets and Languages . 16
2.2 Polytopes . 17
2.3 Block Triangular Matrices . 17
2.4 Types of Dynamical Systems . 19

2.4.1 Transition Systems . 20
2.4.2 Linear Systems . 21
2.4.3 Piecewise-Affine (PWA) Systems . 22

2.5 Invariant Sets . 22
2.5.1 Invariant Set Computation . 23
2.5.2 Graph Notation . 23

3 Correct-By-Construction Control with Missing Data 25

v

3.1 Introduction . 25
3.2 Problem Statement . 25

3.2.1 Model Description . 26
3.2.2 Problem Statement . 27

3.3 Synthesis of a Prefix-Based Feedback . 28
3.3.1 Time-Based Feedback Laws and Their Limitations 29
3.3.2 Prefix-Based Feedback Laws . 31

3.4 Discussions . 35
3.4.1 Implementation Strategies . 35
3.4.2 Relationship to Detectability and Stabilizability 36

3.5 Examples . 37
3.5.1 Estimator Synthesis . 37
3.5.2 Controller Synthesis . 39
3.5.3 Controller Synthesis: Formation Control 41

4 Synthesis of Finite-Horizon Adaptive Controllers for Hybrid Systems Using Bilinear
Optimization . 45

4.1 Introduction . 45
4.2 Problem Formulation . 45
4.3 Estimator Structure . 47
4.4 Internal Controller Structure . 50

4.4.1 Closed-Loop Trajectories and Robust Reachability 51
4.4.2 Disturbance Feedback Parameterization 53

4.5 Optimization-Based Solution . 54
4.5.1 Other Exploration-Exploitation Profiles 56

4.6 Results . 59
4.6.1 Case Study 1: All Controllers Discriminate 60
4.6.2 Case Study 2: Mode Discrimination is Not Possible 61
4.6.3 Case Study 3: Simplified-Drone System 62
4.6.4 Case Study 4: Scalability Analysis . 63

5 Controller Synthesis for KLTL Tasks . 65

5.1 Introduction . 65
5.2 Problem Statement . 65
5.3 Approach . 67

5.3.1 Satisfying Atomic Propositions . 69
5.3.2 Satisfying Formulas with Repeated Next Operators 70
5.3.3 Satisfying Formulas with the Until Operator 71
5.3.4 Satisfying Formulas with the Knowledge Operator 71

5.4 Satisfying More Complex Formulas . 73
5.5 Results . 75

5.5.1 Similar Rotation System . 75
5.5.2 Drone with Corrupted Velocity Commands 77

6 Intention-Aware Supervisory Control with Driving Safety Applications 80

vi

6.1 Introduction . 80
6.2 Problem Statement and Architecture . 80
6.3 The Scenario and System Models . 83

6.3.1 Dynamics . 84
6.3.2 Intention Models . 84
6.3.3 Safety Requirements . 86

6.4 The Guardian for the Overtake Scenario . 87
6.4.1 Library of RCIS . 87
6.4.2 Intention Estimation . 88
6.4.3 Putting things together . 89

6.5 Results . 89
6.5.1 Implementation and Experimental Setup 90
6.5.2 RCIS Computation Results and Discussion 90
6.5.3 Overtaking Simulation . 91
6.5.4 Results from Driving Simulator . 93

7 The Inter-Triggering Hybrid Automaton . 95

7.1 Introduction . 95
7.2 A modeling formalism for interacting systems 96
7.3 Compositional Safety Rules . 100

7.3.1 Control Policies and Safety Control Problem for ITHA 101
7.3.2 Responsibility-Sensitive Safety . 101
7.3.3 Finding Resolution Over-Approximations 105

7.4 Experiments . 108
7.4.1 Single-agent control: highway driving 108
7.4.2 Multi-agent control: parallel processors 111
7.4.3 Supervision: Evaluation of ITHA on data 113

7.5 Discussion . 115

8 Conclusions . 116

8.1 Future Work . 118

APPENDICES . 119

BIBLIOGRAPHY . 134

vii

LIST OF FIGURES

FIGURE

1.1 A map showing the contributions of the dissertation and categorizes them by the type
of controller used, type of hidden mode system and specifications that the system has. 13

2.1 An example directed graph G that we use to demonstrate potential links between pro-
cessors in a server farm. 24

3.1 Estimation error levels achieved by prefix-based (left) and time-based (right) estima-
tors for the adaptive cruise control system. The minimum M2 value for which equal-
ized recovery is feasible, with M1 = 1 and T = 6, is found by solving the robust
linear program for the prefix-based and time-based feedback laws. The optimal M2

that the prefix-based feedback can guarantee is M2 = 1.1498 while the optimal M2

that the time-based feedback can provide is M2 = 2.9864. 39
3.2 Consider any one of the panels above. In each panel, multiple trajectories of the lane

keeping system are visualized, where each trajectory is initialized at the same state on
the M1 = 0.3 hypercube’s boundary and experiences the exact same disturbance (a
carefully chosen, maximum norm disturbance). The only thing that varies across each
trajectory is the missing data pattern σ. Thus, what causes the trajectories to diverge is
how the prefix-based controller handles these missing data events when they happen.
Regardless of the missing data pattern, it is shown that these adversarily chosen initial
conditions and disturbances can still be guaranteed to return to the desired level M1

and the system achieves equalized performance. 40
3.3 A time-based controller using the worst-case language could not guarantee that the

followers would safely exit the channel. It can guarantee that followers (black drones)
will remain in the black outline defined by M2 = 2 which overlaps with the red wall
(thus collisions may happen) . 43

3.4 While in the channel, the system experiences missing data events according to lan-
guage L3, but a prefix-based controller can guarantee that the followers (black drones)
will travel through the channel without colliding with either wall (M2 = 1.3 and the
black outline does not ever touch the red wall) . 43

4.1 The structure of a consistent belief controller γ which, at each time, receives the ex-
ternal behavior (x(0 : t), u(0 : t− 1)) and produces the control input u(t). 48

viii

4.2 An illustration of reachable behavior sets (left) and consistency sets (right) for a sys-
tem with Θ = {1, 2}. We omit x(0) dimension as it is a singleton so the sets are shown
in X × U space. Take, for instance, the length-two estimation sequence m = Θ{2}.
The set C(Θ{2}) contains all state-input pairs that will lead to the estimate {2} but not
to the estimate {1} at time t = 1, whereas the set R(Θ{2}) contains all state-input
pairs that would lead to an estimate µ(1) such that {2} ⊆ µ(1). Reachable behav-
ior sets are always convex, but can be overlapping (left). Consistency sets, however,
can be non-convex and collectively partition the space of possible reachable behaviors
(right). 50

4.3 Left: Reachable sets for the two modes in the Opposing Rotations system. Note that,
with zero input, each system cannot guarantee that the target set will be reached, but
with a very simple closed loop controller, both systems can be identified at time 1
and then steered into the target set. Right: The closed-loop reachable sets where the
adaptive controller guarantees that the target state (yellow) is reached regardless of if
system 1 (top figure) or system 2 (bottom figure) is the true mode of the system. . . . 61

4.4 Ten different runs of the system in Example 4.6.2 with the controller synthesized.
Runs of mode 1 (cyan) and mode 2 (magenta) both reach the target though they may
or may not be identified. 62

4.5 Several runs of the drone altitude controller with mass randomly selected for each run. 63

5.1 For the drone with potentially corrupted velocity commands, we design a controller
using Proposition 19. The adaptive controller correctly steers the corrupted or normal
system into the correct regions (X (1)

T in red, or X (2)
T in magenta) as is guaranteed by

the proposition. 78
5.2 The potentially corrupted drone system from Section 5.5.2 is implemented by mod-

ifying the software of a Crazyflie drone. For the task discussed in the same subsec-
tion, we design an adaptive controller that is guaranteed to steer the drone into region
1 (marked in only masking tape) on the ground or the repair region (outlined with
masking + electrical tape) on the ground. The decision of which area to land in is
determined by what the controller learns over the course of the experiment. 79

6.1 Guardian architecture proposed to solve Problem 4. 82
6.2 The red and blue vehicles represent the lead vehicle and ego vehicle, respectively. The red and

blue boxes indicate the unsafe and the reaction zone, respectively. 86
6.3 The invariant sets for the bounded velocity model (red) and the model of the cautious driver

intention (red+blue, the result after 5 iterations). 90
6.4 Safe inputs (blue regions) at state [25, −0.297, 16.52, 20]⊤ for aggressive driver intention

(left), cautious driver intention (middle) and bounded velocity model (right). 91

ix

6.5 The control inputs (red lines) of the ego vehicle over time (in seconds) for the following sce-
narios with and without supervision: ego car tailgates the lead car for a few seconds and then
overtakes. The ego car in (a), (b) is controlled by an MPC controller, but in (c) is controlled by
a human driver using the vehicle simulator in Figure 6.6. The lead car has cautious intention.
The blue lines and shadow label the range of safe inputs given by the invariant sets. The cyan
dash line labels the time when the intention estimation gives the correct intention. The green
line in (b) labels the time when the ego car’s inputs are overridden by the supervisor. The safe
input ranges in the first and second rows in (a), (c) are computed with respect to the bounded
velocity model and the cautious driver intention model respectively. 92

6.6 Driving Simulator . 94

7.1 The individual dynamics for a processor in the collection specified in Example 4. The
processor is unable to accept as many jobs when xi(t) ≥ nthrottle and it experiences a
stack overflow (i.e. it fails) if xi(t) ≥ noverflow. 97

7.2 A collection of vehicles on the highway, as described in Example 5. The ego vehicle
E is marked in blue, and longitudinal distances between the ego vehicle and car i are
marked as hrel

i . 99
7.3 The controlled invariant set for the car-following system defined in (7.3) for parame-

ters used in [111, 149]. 99
7.4 Highway driving example. Red: ego vehicle. Blue: uncontrolled vehicles. Arrow

magnitudes are proportional to agent velocity. Top row: the ego vehicle can make
an advantageous change to lane 3 under (B), but not under (A) due to a hypothetical
simultaneous lane change from the lane 4 agent to lane 3. Middle row: the ego vehicle
cannot make an advantageous lane change to lane 4 under (A) due to a hypothetical
simultaneous lane change from the lane 5 agent to lane 4. Bottom row: At the end of
the simulation, there is a large performance gap between using over-estimates (A) and
(B). 111

C.1 An illustration of the transition system TS1. Black arrows indicate the existence of
one transition to another. 130

C.2 An illustration of the transition system TS2. The red arrows represent transitions
under the control input α only, the blue arrows represent transitions under the action
β only, and the black arrows represent possible transitions under any action in Act. . . 132

x

LIST OF TABLES

TABLE

3.1 Constants used in the Automatic Cruise Control (ACC) Example. 38
3.2 Analysis of the control synthesis time when the number of controlled agents increases. 44

4.1 Constants used in the drone system’s definition. 63
4.2 Controller synthesis times for systems of increasing dimension. 64

6.1 Parameters in intention models . 85

7.1 Parallel processor statistics, averaged over 25 runs. 112
7.2 Override statistics for HighD data-set supervision. 114

xi

LIST OF APPENDICES

A Missing Data Proofs . 119

B Defining the Resets and Resolution Function for the Highway Example 124

C The Difference between KLTL and LTL . 127

xii

LIST OF ACRONYMS

Adaptive Control Lyapunov Function (aCLF)

Adaptive Control Barrier Function (aCBF)

Computation Tree Logic (CTL)

Cyber Physical System (CPS)

Inter-Triggering Hybrid Automaton (ITHA)

Linear Temporal Logic (LTL)

Linear Temporal Logic with Knowledge Operator (KLTL)

Mixed Integer Quadratic Program (MIQP)

Model Reference Adaptive Controller (MRAC)

Piece-wise Affine (PWA)

Proportional Integral and Derivative (PID)

Self-Tuning Regulator (STR)

Set-Membership Identification (SMID)

Signal Temporal Logic (STL)

xiii

ABSTRACT

The theory of formal methods had a profound effect on computer science. By providing tools that
can verify a program’s correctness or generate software that is “correct-by-construction,” Formal
Methods made it much easier to design safer, bug-free code for computer systems. Safe, bug-free
code is not only helpful in pure software systems, but also in systems that interact with and manip-
ulate the world. Unfortunately, these so-called Cyber-Physical Systems (CPSs) have limitations or
considerations that prevent many of the formal methods tools from being immediately applied to
them. Of the many limitations that prevent Formal Methods from being applied to Cyber-Physical
Systems, this dissertation discusses three types: sensing, modeling, and information limitations.

First, this dissertation develops a method for overcoming a practical sensing limitation called
“missing data.” Missing data refers to a phenomena where some data that is important to the CPSs
safety is lost either in transmission or during sensing. This work provides a method for guar-
anteeing safety of a CPS experiencing missing data during a reachability task. Specifically, we
define a linear program that is feasible if and only if an adaptive controller exists that is guaranteed
to achieve the reachability task subject to missing data. The adaptive controller is composed of
prefix-constrained linear controllers with a simple switching rule between them and can be opti-
mized with respect to a convex objective function.

Second, this dissertation develops a method for overcoming the limitations in our ability to
model CPSs. Often, a single model of the CPS is not known a priori but a family of potential
models is known. To guarantee that our system is safe while accomplishing a reachability task
and with only a family of models known a priori, this work provides a bilinear optimization-based
method which can guarantee task satisfaction despite this initial model uncertainty. Each model
can be incorporated into an optimization using a consistency set, which is similar to a reachable
set but contains additional model information. The consistency set is used to determine which
actions will discriminate (or reveal information about the true, linear mode of the system) a priori
and thus analyzes the trade-offs of discriminating actions and other tasks (such as reachability of
a target region or minimization of a cost). The controller design problem is defined as a bilinear
optimization. Rather than constructing this bilinear optimization problem from scratch, a method
is presented for translating Linear Temporal Logic with the epistemic knowledge operator (KLTL)
formulae into bilinear optimization problems.

xiv

Thirdly, this dissertation develops a method for overcoming the limited ability of a single CPS
to make safe actions when part of a large collection of connected CPSs. The proposed method
decomposes the problem of guaranteeing the safety of a collection of CPSs into a series of smaller
problems for each individual agent using the framework of the inter-triggering hybrid automaton
(ITHA). Under this framework, the problem can be solved by finding self-safe actions (actions that
an agent knows should be safe under its own dynamics) along with responsible actions (actions
that will not cause problems for others that this agent is “responsible for”).

xv

CHAPTER 1

Introduction

Adaptation to new environments has been an extremely useful skill for humans, allowing us to
limit the number of skills we need to master to survive. For example, a person living in the tropical
nation of Trinidad and Tobago can limit the number of skills they learn about keeping warm on the
tundra because they will likely never need that knowledge to survive. This person can adapt to the
tropical climate and avoid overly concerning themselves with non-tropical issues.

While such adaptation would be similarly useful in robots and other cyber-physical systems,
transferring the adaptation to them has been difficult. For example, a robot that is fixed in a certain
environment (e.g., a restaurant) might need a policy to achieve its tasks safely, while the same robot
in different environment (e.g., a home) might require a somewhat different policy. The policy the
robot must use to take actions depends on the environment and what we can sense, predict, or
previously know about it. The task of using information collected about the environment to select
a policy that achieves a given task is the focus of the field of adaptive control.

The field of adaptive control initially addressed the design of adaptive controllers for aircraft
autopilot systems [179]. The designers of autopilot systems realized that, while a certain PID
controller would safely guide a pilot at certain altitudes and aircraft speeds, it would not be safe at
other altitudes and aircraft speeds. The adaptive controller was designed to safely switch between
multiple PID structures depending on the measurements of the current altitude and speed. This
switching adaptive structure was developed in the 1950s, and many other forms of adaptive control
were developed in subsequent years. Unfortunately, the many types of adaptive controllers that
were used to satisfy goals and specifications such as stability were not of use in some practical
situations or were difficult to certify.

A richer set of goals is discussed in the area of formal methods (originally created in computer
science). Formal methods is used in computer science as a set of tools that can for verify the
correctness of or correctly design software. The success of such tools has caught the attention of
control theorists and The area of formal methods in control seeks to expand the set of specifica-
tions that controllers can achieve. Specifications such as reachability and invariance are of interest

1

in this field, and practitioners attempt to design controllers that satisfy these specifications. The
controllers developed by formal methods practitioners have been applied to linear [72, 122], non-
linear [2], and hybrid [76] cyber-physical systems including adaptive cruise control [111, 2] and
air conditioning systems for public buildings [72]. While the number of places where formal meth-
ods have been used is inspiring, there are many limitations as to where it can be applied. Formal
methods, for example, are typically used in systems where the state is directly observed or where
the states of the system are finite.

Assuming that the state of the system is directly observed (state feedback) or that the number of
states in the system are finite (finite state space) are prohibitive for many interesting cyber-physical
systems such as robot manipulators or large fleets of autonomous vehicles. In such situations,
the hidden dimensions, or the large dimensions of the system state, make using classical formal
methods problematic. When these properties of the state are present, we propose methods that
allow for the synthesis of controllers that correctly satisfy the goal or specification using adaptive
controllers.

The form of dynamical system that will be discussed in this dissertation is the discrete-time
hybrid system:

Definition 1 (Hybrid System with Unknown Parameters). A discrete-time hybrid system with hid-

den mode is a system whose hybrid state at time t, st = (xt, qt), evolves according to the function:

s(t+ 1) = fθ(s(t), u(t), w(t)), w(t) ∈ Wq(t) (1.1)

and its state is measured according to the function

y(t) = ωθ(t, s(t), v(t)), v(t) ∈ Vq(t). (1.2)

The hybrid state st is composed of the continuous state x(t) and the discrete state q(t). The
parameter θ is not directly observed but can impact the dynamics or the measurement function.
The input to the system is u(t). The process disturbance to the hybrid system’s dynamics w(t)

belongs to a bounded set Wq(t) that is determined by the discrete set q(t). The measurement
function ωθ is a function of the current time, the state and the measurement disturbance v(t) which
belongs to a bounded set Vq(t) that is determined by the discrete state q(t).

The dynamics fθ is assumed to be a Lipschitz continuous function for a fixed mode θ ∈ Θ. The
measurement function ωθ may not be smooth.

Dissertation Organization. During the rest of this chapter, two of the fields (Adaptive Control
and Formal Methods) that this dissertation seeks to combine are discussed. In Chapter 3 of this
dissertation, an adaptive controller is developed which can be used to tackle the problem of con-

2

trolling a dynamical system in the presence of data or measurement loss during transmission from
the sensor to the controller (i.e. ωθ(t, s) becomes an empty set for specific values of θ). In Chapter
4, an adaptive controller is developed which automatically trades off between mode discrimination
and robust control to achieve a finite time horizon task (i.e. the synthesis algorithm automatically
determines which regimes Θi ⊆ Θ the final controller will be robust to depending on user prefer-
ences and the important constraint of achieving the task). In Chapter 5, we present a method which
synthesizes an adaptive controller of the form in Chapter 4 that correctly satisfies a KLTL formula.
In Chapter 6, we present a method developed in [136] for designing an adaptive controller which
uses intention estimation techniques to decide which robust control invariant set to use to guide its
decision-making. In Chapter 7, the conditions under which a very permissive or very conserva-
tive adaptive controller can be developed in several cyber-physical systems (e.g. an autonomous
vehicle driving on a highway) are developed in terms of a modelling formalism which simplifies
the controller synthesis problem for large multi-agent systems. Finally, this dissertation concludes
with Chapter 8, which contains a review of the results presented here and an examination of its
future implications.

1.1 Existing Gaps

This dissertation was written to address several important limitations in the field of formal methods.
These limitations are that the field does not yet have standard tools for addressing sensing, model
and information uncertainty. These three uncertainties will be described and then the field’s current
approaches to them will be outlined briefly in this section. A deeper analysis will be found in
Section 1.2.

• Sensing Uncertainty: In this dissertation, sensing uncertainty refers to the uncertainty in
when (if at all) measurements from sensors will arrive. This phenomena of delayed or
dropped sensor measurements in control systems has been studied in the area of wireless
control networks [173, 54], but has not been fully explored by the formal methods commu-
nity. This is crucial because many important control systems in today’s world (e.g., storm
water drainage systems, power generation networks) rely on sensor readings being sent wire-
lessly across large distances. It is well-understood that such communications can be delayed
or interrupted due to things like weather and adversarial attacks on the network [104].

• Model Uncertainty: In this dissertation, model uncertainty refers to parametric uncertainty
in the dynamics of a system (i.e. how the current state evolves into the next state). The
“parametric uncertainty” in the dynamics indicate that there are some parameters (typically
that cannot be sensed) but govern the dynamics of the system. This is often the case when

3

a robotic system interacts with objects and people in the real world. Objects in the world
have different masses, materials, and shapes which can dramatically impact how their state
evolves over time [117] (e.g. a rubber ball will bounce in a very differently way than a glass
ball). Learning or adapting to knowledge about the dynamics is necessary to understand
these parameters in real-time and then to make guarantees about correctness and safety.
Making such guarantees has only just begun to be studied through work such as [133, 91].

• Information Uncertainty: In this dissertation, information uncertainty refers to the uncer-
tainty which occurs when a single agent (or robot) must make a decision as part of a team,
but only has understanding about its individual state and its neighboring teammates. The
problem of designing controllers or decision-making software for a single agent with limited
knowledge about its team is the decentralized control problem and it has been approached
recently by the formal methods community [114, 105, 119]. The approaches to the problem
have many different flavors, but are sometimes limited by the definition of safety and other
tasks. Specifying safety now often requires careful contract definitions [57, 25, 58], but a
more flexible notion of safety (e.g., [141]) may be better suited for these problems.

1.2 Literature Review

The following collection of prior work will be useful in putting this work’s claims into context.

1.2.1 Real-World Limitations of CPSs

The first part of this literature review will discuss the many ways that a real CPS differs from the
idealized CPS considered in traditional formal methods research. These differences are described
as “uncertainties” which are not present in traditional formal methods problem statements but must
exist in order for correct-by-construction control to work on real CPSs.

1.2.1.1 Sensing Uncertainty (or Intermittent Sensing)

In this dissertation, sensing uncertainty refers to the uncertainty in when (if at all) measurements
from sensors will arrive.

Sensor information may be delayed when reaching a decision maker by things such as com-
munication queues in networks. For this reason, the subject of handling delayed measurements
has been studied in the context of networked control systems for a long time [177]. In that con-
text, delays in the transmission of sensor data to controllers and controller information to actuators

4

can be expected when transmitting across the network. We will primarily focus on the delay in
transmission of sensor data to a controller/estimator in this dissertation.

The delay itself can be modeled as the output of a stochastic process. Several works model
it as a Markov Decision Process with known [143] or partially known [176] transition proba-
bilities. Nonetheless, the probabilistic nature of these approaches is not directly applicable for
several safety-critical applications, where hard bounds on the estimation or tracking errors are of-
ten necessary. For example, in motion planning problems with long time horizons, the transition
probabilities lead to the overall plan having a low probability of success.

Sensor information may also be completely lost when being transmitted to a decision maker.
Control and estimation problems for systems subject to such losses are sometimes said to be subject
to missing data or intermittent measurements. These systems have been extensively considered in
the context of networked control systems [175, 145, 19] and more recently for security problems
involving denial of service attacks [4]. For missing and intermittent observations modeled by
probability distributions, extensions of the Kalman filter have been proposed (e.g., [145, 78, 16])
to estimate the system state. Set-membership estimators have also been proposed to estimate
the state of the system subject to such events [56, 164]. Set-membership estimators produce an
estimate which is a set of potential values that the state can currently have given the previous data.
Similarly, in this setting of probabilistic data loss models, stabilizing controllers or controllers
minimizing a quadratic cost have been studied (e.g., [140, 175, 55]). The probabilistic nature of
many of these approaches makes it somewhat hard to use for safety-critical applications, but the set-
membership approaches are much easier to apply for safety-critical systems. The set-membership
estimators produce hard bounds on the estimation or tracking errors which can be used to guarantee
that a state is safe during control.

Another approach for modeling missing data patterns is to use a characterization of the set of
all plausible missing data patterns. A simple characterization of this sort is the so-called (m, k)

firmness [77, 49] that indicates that for any k consecutive measurements, at least m are available.
A more general set description can be obtained using automata [79, 171] or finite languages [131,
67, 132] to represent the set of all feasible missing data patterns. In continuous time, missing data
patterns are effectively intervals during which measurements are not taken [84]. Jungers et al. [79]
study observability and controllability like properties for discrete-time linear systems subject to
data loss, and characterize conditions on the system and the automata representing the missing data
pattern for these properties to hold. Laine et al. [84] define controllers for continuous time systems
with invariant set analysis and the Hamilton Jacobi partial differential equation which is also known
to struggle with scalability (in terms of the size of the state space). In this dissertation, we use the
language-based representation as in [131, 67, 132] and focus on control and estimator designs,
which guarantee constraints on the states or errors are satisfied, for systems subject to missing

5

measurements and various types of noise. Our approach is based on linear programming and
scales much better than similar discrete-time methods. Another related, yet complementary line
of work is on designing measurement schedules (i.e., when to measure and when not to measure
if there is a budget on the number of measurements) together with controls [39, 7], which differs
from our setting in that we assume the missing measurements are chosen adversarially from the
set of feasible patterns.

1.2.1.2 Model Uncertainty

In this dissertation, model uncertainty refers to parametric uncertainty in how the system’s state
will evolve over time (i.e., parametric uncertainty in the dynamical system model).

Parametric uncertainty is a useful concept in the real world when a CPS must interact with
many different objects or people. For example, a robotic arm brought into the home to organize
a toy room will need to understand how to manipulate objects like Hot Wheels toy cars, Lego
bricks, and much more. One could attempt to address this by saving an extremely rich data set
into the robot’s memory containing every object that can possibly find. Unfortunately, this is an
impractical solution due to the amount of data collection necessary and the amount of storage
required to keep the data set up-to-date. Instead, a less data-intensive approach is to develop
algorithms that can work for classes of objects (e.g. algorithms that work for all toy cars) by
incorporate parametric uncertainty into them. By incorporating parametric toy uncertainty into its
algorithms, an algorithm does not need to know the exact toy that it has picked up but can instead
discover the relevant parameters (e.g., mass, moment of inertia, dimensions) and then achieve the
task at hand.

As illustrated in the toy example, parametric uncertainty often arises in situations where a CPS
interacts with an object without knowledge of its physical parameters [148, 37] like mass or mo-
ment of inertia. Such parameters have physically plausible bounds which makes it easy to verify
whether or not an estimator is correctly identifying them. Model uncertainty can also arise in situa-
tions where a fault occurs in a CPS. If the possible faults are known a priori, then all faulty systems
and the correct system can be modeled a priori [169, 35]. It is up to the CPS’s controller will thus
have model uncertainty whenever it is running and must continuously make decisions that prove
or disprove faultless operation.

Parametric uncertainty may appear in linear, nonlinear, and hybrid systems [106]. In some
cases, model uncertainty is represented by a finite set of potential models [121, 128] (i.e. the
parameters are the dynamics themselves). In other cases, the model uncertainty is represented by
a parameter vector which appears linearly in the dynamics [92, 150]. For an example, consider the

6

following dynamical system:

ẋ = f(x)−∆(x)⊤θ +B(x)u

which appears in [92]. When this is the case, set membership [92] or control-barrier based estima-
tors [150] can be used to identify plausible values of the uncertain parameter θ. Occasionally, the
parameter vector does not appear linearly in the dynamics but in a nonlinear, but Lipschitz function
[106] in a nonlinear or a sector-bounded function [17]. When the sector-bound is a set like a conic
hull and it is the only nonlinear component in an otherwise linear system [17], there are robust
control approaches that can handle them.

1.2.1.3 Information Uncertainty

In this dissertation, information uncertainty refers to uncertainty about the effect of a single agent’s
action will be when it is part of a team but only has partial information about the team. This
uncertainty arises in the decision-making processes of single agents in large collections (e.g. a
single autonomous car on a highway of other cars) as they attempt to reason about what a safe
action will be when they do not know how other agents will react to their own action.

This uncertainty is the reason why centralized controllers (or single controllers that control
every agent in a collection) [81] are capable of achieving tasks that decentralized controllers (or
controllers that run separately on each individual agent in the collection) [11, 15, 30] can not
[157]. Unfortunately, centralized controllers can be impossible to implement in the real world due
to communication bandwidth issues [15], security/competition concerns [123], and much more.
So, decentralized controllers are needed, but come with the limitation that each controller only
understands local information.

The information available to each agent in the collection can be described with a so-called
information structure [95, 174]. An information structure can be static (i.e., the information is
shared/observed by each agent does not change over time) or dynamic (i.e., the information that
is shared can be changed by other agent’s actions, states, etc.). One commonly used example
of a static information structure is the partially nested information structure [174, 6]). In this
setting, there is a tree structure that explains that for each agent (represented as a node on the
graph) the information available to it is a superset of all of the information available to its child
nodes. Another common static information structure is the one-step delayed information structure
[107, 125] where information from one agent is sent to another after one step.

The number of information structures for which strong guarantees can be made are limited.
Partially nested information structures can be very useful for making guarantees as they allow for
an intuitive decomposition of the optimal control problem. Without such information structures,

7

one can analyze agents individually and assume that all other agents act adversarially (a very
conservative approach)[40]. Another approach to making guarantees without the aid of helpful
information structures but with an expectation of collaboration is to use contract-based reasoning
[41, 149, 101, 163, 34, 138, 57, 88]. Another alternative viewpoint is presented by responsibility-
sensitive safety [141, 158, 68, 42], in the context of autonomous driving, where some hard safety
constraints are replaced by a notion of not causing a crash and avoiding one whenever possible.
This is particularly well-suited for scenarios where some of the agents are human-controlled, which
can lead to unpredictable behaviors. From this viewpoint, we expect autonomous agents to act in
a well-behaved fashion as long as others reciprocate, and we should not punish the autonomous
agents for failures that are out of their control.

1.2.2 Adaptive Control

Adaptive controllers are informally defined as any “controller with adjustable parameters and a
mechanism for adjusting the parameters” [179]. This definition is broad enough to encapsulate
many forms of feedback controllers, but several of the popular types of adaptive controllers are
gain scheduling, model reference adaptive controllers (MRACs), self-tuning regulators (STRs)
and dual controllers.

A gain scheduling controller changes its parameters depending on the operating conditions of
the process in a pre-programmed way [86]. The pre-programmed gain schedule can change gains
depending on the current time [80], the current state and its proximity to a nonlinearity/region
of interest [50], or something else. It is frequently used in nonlinear control, where known
non-linearities are compensated by a pre-computed gain schedule. Unfortunately, designing gain
scheduling controllers is not straight-forward. For example, a constraint on how quickly the state
changes [86, 36] may be needed for such methods to work on a given nonlinear systems and it is
unclear how to define such a limit a priori. Also, the designer must select the scheduling variables
and the switching function, a task which may not be straight-forward depending on how nonlinear
the system dynamics are.

Model reference adaptive controllers (MRACs) or model reference adaptive systems are con-
trollers in which “the desired performance is expressed in terms of a reference model, which gives
the desired response to a command signal” [179]. In such a controller, there is a reference model
which is placed in the closed-loop system with the controller. With both of these components in
the control loop, the error (or a loss function written in terms of the error) can be minimized using
a gradient of the cost with respect to the controller’s parameters. This is the so-called MIT rule
[113, 98]. The MIT rule is used to adapt adaptive controller parameters in a way that minimizes the
cost or loss and has been implemented in DC motors [13], simple robotic systems [73] and more.

8

Unfortunately, in these applications and others, unconstrained gradient descent is often unsafe or
undesirable. In order to decrease the value of the loss while achieving other tasks, Lyapunov theory
has replaced [116, 115, 93] or in some cases combined with the MIT rule [124] to achieve stability
while properly adapting to the target model. Other notions of stability can also be used to improve
the classic MIT rule approach to MRAC design, but all of these methods suffer from some sort of
restriction to sufficiently smooth dynamics or to systems with perfect state feedback. Only in those
situations can derivatives be consistent and thus they are the most well-studied.

Self-tuning regulators (STRs) are controllers that attempt to automate controller design and
parameter estimation during controller operation. The controller uses online estimates of the pa-
rameters to run a controller design algorithm which is then immediately used during a control task.
Notably, self-tuning regulators were originally intended for systems with unknown but constant
parameters or slowly-varying parameters [178]. The parameter value is converged upon by the pa-
rameter estimator, so that the controller (which treats the estimated parameters as the true param-
eters, a treatment which is called the certainty equivalence principle) eventually has a model close
enough to the true system’s. The estimation algorithm for self-tuning regulators is usually of a sim-
ple form like the recursive least squares estimator [179, 62] but a plethora of estimation algorithms
have been proposed including support-vector based [156] algorithms. The controller synthesis al-
gorithms are typically those controller design algorithms which can be computed quickly, including
the Kalman Filter gain design algorithm [69], or a pole placement techniques [9, 161, 168, 137].
Self-tuning regulators, which mean to estimate and design controllers in real-time, are frequently
limited to using algorithms which are simple enough to be run in very fast control loops and can
not incorporate too many safety or task specifications into their design.

Dual controllers are controllers that incorporate the dual effects of a controller’s actions into the
design. The dual effects of a controller are that ”control inputs to an uncertain system must have
a probing effect for active learning of system uncertainty and a directing effect for controlling the
system dynamics” [48]. Dual control design methods attempt to find optimal controllers that solve
the stochastic version of the adaptive control problem. The principle of optimality is thus often
used to design the controller [100], but model predictive control based methods can also be used
[151, 152] to find solutions to the problem. Unfortunately, it is frequently difficult to solve the
control design problem using Bellman’s equation because “closed-form solutions for the Bellman
equation can be obtained only for a handful of situations” [100], so approximate solutions are
found instead [71, 162]. The model-predictive control approaches also suffer from computation
difficulties and frequently resort to heuristics such as sampling trees or restrictive control functions
[162] to reduce the complexity of the optimization problem.

The adaptive controllers in this work are similar to gain scheduled controllers, self-tuning reg-
ulators and dual controllers. The aims of this dissertation are to design such controllers in a way

9

that correctly satisfies a given specification for different classes of discrete-time systems.

1.2.2.1 “Explore, Then Exploit”

One common method for quickly designing adaptive controllers is to implement a controller that
has two discrete modes. There is an “Explore” mode of the controller, which typically implements
a simple system identification algorithm and then there is an “Exploit” mode of the controller,
which typically implements a robust controller. This description of the adaptive controller’s modes
comes from the popular explore-exploit paradigm discussed in many forms of psychological re-
search [165, 99, 32] (also examined in several related fields). Often, the “Explore” mode is run
until parametric uncertainty is reduced enough in the controller. Then, the “Exploit” mode is run
which has a guarantee that the task can be achieved when uncertainty is reduced to an acceptable
level [136]. In this section, we discuss some of the algorithms implemented in the “Explore” or
”Exploit” modes.

One form of system identification with formal guarantees is active mode or model discrimina-
tion [46]. The theory of active model discrimination designs controllers that can identify the true
model of a system from a class of models for the system, with predominant application being fault
detection [139, 120]. This controller, also known as a discriminating controller, produces a dif-
ferent trajectory for every system in the class when it is used to close the control loop. Designing
discriminating controllers for linear [35], nonlinear [144], or discrete-state [53] systems is an ac-
tive area of current research unto itself. For continuous-state linear or nonlinear systems, the main
design approach is based on (convex) optimization; and for discrete-state systems, the problem is
related to automata learning.

Another form of system identification with formal guarantees is set-membership identification
(SMID) [92]. An estimator using SMID produces not a single estimate of the unknown parameter
in an uncertain system, but instead produces a set of parameters which explain the observed data.
This type of system identification algorithm is closely related to interval estimation, where intervals
in n-dimensional space are produced as estimates of unmeasured parameters [75, 108] or states
[44]. One advantage of producing interval estimates is that computing the volume or “size” of the
estimate is easier than when the set-valued estimate is an arbitrary set.

In addition, another form of system identification uses small modifications to controllers to
better identify parameters [3, 155]. In some cases, the modifications are small deviations applied
to a trajectory-tracking controller that reveals more information about the parameters [3]. In [155],
white Gaussian noise is applied to the system by the controller in order to characterize the system.

10

1.2.3 Formal Methods

Formal methods originated in computer science where designers of computer algorithms and net-
work communication protocols sought to avoid using ”informal design techniques” and to instead
define techniques that “facilitate design of correct protocols” [29]. The three primary topics within
formal methods were defined as specification, verification, and implementation or synthesis. While
these three topics occur in many other fields as well (e.g., control theory), “formal methods” fo-
cused on applications in computer programming. These three topics were recently incorporated
into the new areas of program synthesis in computer science [61, 51] as well as control theory.
Formal methods have been applied to controller specification [146], synthesis [110], and verifica-
tion [5] in a variety of ways but we will focus on controller synthesis for the rest of this section.

A specification in formal methods is typically written in the form of temporal logic (e.g. LTL
[14], CTL [38], STL [96]), but can equivalently be described as an automaton [146] or via safe sets.
This dissertation will consider specifications written in terms of temporal logics without much loss
of generality. The synthesis problem is the problem of designing a controller which guarantees that
the trajectory of the closed-loop system satisfies some temporal logic property correctly often by
”[merging] concepts from formal methods, including formal specification languages and discrete
protocol synthesis, and those from controls, including optimization-based control and receding
horizon implementations” [167]. Discrete protocols can be developed to solve control problems
by decomposing a control system into a finite, discrete-state space system using state-space ab-
straction [66, 110, 12] and then developing a strategy over the now discrete system. Alternatively,
optimization-based protocols can be developed to achieve a specification by defining controllers
via optimal control or model-predictive control approaches [18].

Until recently, most control synthesis problems in the literature used the setting where the state
of the system was completely observed by the controller and the control system’s dynamics were
completely known a priori. This allows for the controller to determine the correctness or satisfac-
tion of a formula during operation, but is frequently not the case in most control problems. The
areas of output feedback is a large segment of control theory and adaptive control, as was just
stated, are also of great interest to control theorists and yet very little has been said of applying
formal methods in these settings. Some attempts at designing adaptive controllers using formal
methods have recently been published, where state space abstraction [133] was used to simplify
the problem or invariance specifications were considered which limited the scope of the guarantees
that could be made [94]. Applying temporal logic to either of the control areas of output feedback
or adaptive control is difficult because there is typically partial information available in each setting
and thus it is difficult to reason about a formula being satisfied or not by the controller given the
current output trajectory. Instead, one must reason about all possible state trajectories related to an
output trajectory which requires temporal logics that can define hyperproperties. There are very

11

few papers discussing hyperproperties for control systems [5]. To address this scarcity, this disser-
tation aims to demonstrate how epistemic logics (which can be used to represent hyperproperties)
can be used to express tasks that are important in robotics and can be used in controller synthesis.

1.2.3.1 Bounded Error Control

As we are interested in enforcing constraints on the control or estimation error, our results are
related to disturbance rejection, set-valued observers, or ℓ∞ filtering [21, 103, 142, 28, 85], though
these approaches cannot readily handle missing data. Of particular interest to our approach is an
intuitive property for state estimators called equalized performance that ensures that the estimation
error does not increase at each step (e.g., [27, 28]). Instead, we allow a bounded increase in the
error during missing data events as long as the error recovers back to its original level at the end.

From a computational standpoint, our controller and estimator synthesis approach builds upon
Q-parametrization to reduce the non-convex measurement feedback controller/estimator design
problem to a convex optimization form via a nonlinear change of variables [147]. In particular,
we restrict the controllers and design variables in the estimators to be affine in the measurements
with memory (i.e., we allow the current action to depend on past measurements). However, the
main difference is that, instead of memory depending only on the output measurement history,
the memory of the controllers and filters we design also depends on the prefix of the missing
data pattern seen so far (i.e., on the discrete-state history), which results in significantly improved
performance. As an alternative to measurement feedback one can use disturbance feedback [4, 67],
which is equivalent to measurement feedback only in special cases [59]. Existing work using
disturbance feedback with potentially missing data [4, 67] does not consider dependence on the
discrete-state history and our prefix-based parametrization can be used in disturbance feedback
controllers/filters as well to improve their performance. Moreover, as a minor difference from
the literature, both disturbance feedback and measurement feedback with Q-parametrization are
mostly used for optimal control while we use the latter to enforce constraints in a worst-case
setting using tools from robust optimization, a problem stated as a future direction in [4]. Finally,
the prefix dependence can be interpreted as essentially performing estimation at the discrete-level
akin to estimators in hidden mode hybrid systems [45, 160], however in our case the mode is
observed (we know whether the measurement is missing or not at each time) but we are trying
to estimate the mode-sequence (the missing data pattern). The prefix-based parametrization we
propose is also closely related to path-dependent controllers proposed in [85] in the context of
disturbance attenuation and stability for Markov jump linear systems, with the difference being
that the problems in [85] lead to linear matrix inequalities in the controller gains due to different
control objectives, whereas in our setting the problems are non-convex in the filter/controller gains
and a nonlinear transformation is needed.

12

Specs
and

Models

Finite
Languages

Epistemic
Logics

Inter-Triggering
Hybrid Automaton

Controller
Type

Adaptive Adaptive Decentralized

Sensing Uncertainty
ADHS ’18 [131]
ACC ’19 [132]
NAHS ’20 [129]
CDC ’21 [8]

Modeling Uncertainty
CCTA ’19 [136]
ECC ’20 [127]
HSCC ’22 [128]

Information Uncertainty
HSCC ’21 [130]

Figure 1.1: A map showing the contributions of the dissertation and categorizes them by the type
of controller used, type of hidden mode system and specifications that the system has.

1.3 Summary of Contributions

This dissertation makes contributions in three different areas. It is divided into three different
chapters by the different sources of uncertainty used in adaptation as illustrated in Figure 1.1. We
contribute to each area in the following ways:

1. On adapting to sensing uncertainty:

• For linear systems with output feedback and missing observations coming from a miss-
ing data pattern, we present a method for designing optimal linear controllers or esti-
mators that satisfy finite horizon reachability objectives. (Chapter 3)

• The design method is a linear program and it produces a prefix-based controller, which
adapts to the missing data pattern chosen by the environment. The missing data is
slowly revealed over time in a way that allows the controller to only identify the pat-
tern’s prefix at each point in time, thus making the controller prefix-based. (Chapter
3)

• A finite language-based model is proposed for specifying potential missing data pat-
terns. It is show that feedback controllers that can adapt their gains based on the prefixes
of this language can still be synthesized using convex optimization. (Chapter 3)

• These results are also extended to bounded-error estimation problems in the existence
of missing data. In particular, a novel safety criteria, named equalized performance,

13

that allows the error bound to be relaxed when measurements are missing as long as
there is a guarantee to recover the original bound is proposed. Estimators satisfying
this criteria are shown to be synthesized using similar techniques. (Chapter 3)

2. On adapting to modeling uncertainty:

• An estimation based controller architecture is proposed where the estimator does set-
membership model identification, and the controller switches its linear, disturbance-
feedback gains based on the estimator’s output. Such controllers can be designed for
appropriate linear systems using bilinear programming. (Chapter 4)

• These switching adaptive controller strategies can be described by how they trade off
between exploration and exploitation with an exploration-exploitation profile. When a
profile is provided a priori, we present a method for encoding that desired amount of
exploration and exploitation into the controller design problem while still producing a
bilinear programming problem. (Chapter 4)

• Instead of designing with respect to an exploration-exploitation profile, design of these
adaptive controllers can be done with a temporal logic formula in mind. We show how
to design adaptive controllers that satisfy a useful fragment of KLTL formulas using
bilinear optimization. (Chapter 5)

• An approach for designing adaptive controllers that solve safety problems over an infi-
nite time horizon is also presented. This adaptive controller similarly uses a combina-
tion of affine mode-discrimination and robust control invariant set selection to achieve
safety tasks. (Chapter 6)

3. On adapting to information uncertainty in large multi-agent systems:

• A modeling paradigm named, inter-triggering hybrid automaton (ITHA), is proposed
for modeling dynamically decoupled agents that interact through discrete-triggering
actions. (Chapter 7)

• Compositional safety and responsibility rules are proposed for ITHA agents. It is
shown that if all agents follow these local rules, the overall system is guaranteed to
be safe. Moreover, if one agent follows these rules, there exist strategies for the rest of
the agents to ensure safety of the overall system. This enables designing decentralized
controllers or individual controllers with these rules as constraints. (Chapter 7)

• The effects of changing the information available to each agent at run-time is inves-
tigated and different information sharing methods are proposed. It is shown that the
safety and responsibility rules adjusted to the given information structure allow local

14

controllers to automatically become more permissive with increasing informativeness.
This allows a level of adaptation at design-time since information structures are as-
sumed to be fixed at run-time. (Chapter 7)

15

CHAPTER 2

Mathematical Preliminaries

In this chapter, we will present some of the mathematical concepts and ideas that this work relies
on. Specifically, we discuss several concepts including polytope manipulation.

We denote the set of real numbers by R, the set of non-negative real numbers R+ and the set
of binary numbers by B. Besides these important exceptions, this dissertation will use calligraphic
letters such as S to denote sets. Throughout this work, the norm ∥ · ∥ is assumed to be the infinity
norm, i.e., for a vector v ∈ Rn, ∥v∥ ≜ max

i=1,...,n
|vi|.

The symbol ⊗ represents the Kronecker product, Ik represents the identity matrix of size k,
0k×m represents the k×m zero matrix, 1k denotes a k dimensional vector of ones. The subscripts
are dropped when the dimension of the matrix is clear from the context. The operator diag :

Rn → Rn×n maps a vector v ∈ Rn to the n × n diagonal matrix with the elements of v on its
main diagonal. For matrices and vectors, the inequalities ≥ are always taken element-wise. For a
(block) vector v, vk and vi:j denote its kth entry, and its sub-vector consisting of entries from ith to
jth, respectively.

2.1 Alphabets and Languages

We call any finite set Σ an alphabet. In particular, we use Σ = B to represent missing data patterns.
Any Σ-valued signal q = q(t0)q(t0 +1) . . . q(t0 +N) is called a word. The symbol Σ∗ denotes the
set of all finite-length words (including the empty word), whereas ΣT and Σ[T] denote the set of all
words with length equal to T or with length up to T that are formed by elements in Σ, respectively.
For a word q ∈ Σ∗, its length is denoted by |q|. For i ≤ |q|, we use q[1:i] to denote the length i prefix
of q. For example, if q = q(t0)q(t0 + 1) . . . q(t0 +N), then q[1:i] = q(t0)q(t0 + 1) . . . q(t0 + i− 1).
Finally, the set of all non-empty prefixes of q is denoted by Pref(q). As a concrete example, the
word q = 1001 ∈ B[4] has length |q| = 4, q[1:3] = 100 is a prefix, q[2:3] = 00 is a subword but
not a prefix, and Pref(q) = {1, 10, 100, 1001}. An arbitrary set L of words formed from a given
alphabet Σ is called a language over Σ. We overload the Pref(·) operator and use it for languages

16

as Pref(L) .
= ∪q∈LPref(q).

For a given set S , P≥n(S) denotes the set of subsets of S with at least n elements.
One important set in this dissertation will be the polytope.

2.2 Polytopes

Throughout this work, there are many sets of continuous variables that are represented as poly-
topes. A polytope is a bounded, convex set of vectors which satisfy a set of half-space constraints
(i.e. P = {x ∈ Rn | Hx ≤ h} where H ∈ Rq×n and h ∈ Rq). The representation of the poly-
tope as a set of half-space constraints is called the H-Representation and always exists for each
polytope.

The following results relate polytopes to one another or describe properties of polytopes. These
results will be useful when reasoning about system trajectories and how to formulate optimal con-
trol constraints. The first lemma identifies the conditions under which a polytope is a subset of
another polytope.

Lemma 1 (Polytope Containment [97]). Consider the following two polytopes X = {x ∈
Rn | HXx ≤ hX} and Y = {y ∈ Rn | HYy ≤ hY} where HX ∈ Rqx×n and HY ∈ Rqy×n.

Polytope Y contains X (i.e. X ⊆ Y) if and only if there exists a matrix Λ ∈ Rqx×qy
+ such that:

ΛHX = HY (2.1a)

ΛhX ≤ hY . (2.1b)

The second property is one version of the well-known Farkas Lemma.

Lemma 2 (Farkas Lemma [47]). Consider the matrices H ∈ Rq×n, h ∈ RqH . One and only one

of the following two conditions is true:

• There exists an x ∈ Rn such that Hx ≤ h, or

• There exists a λ ∈ Rq such that H⊤λ = 0, h⊤λ < 0, and λ ≥ 0.

This property allows us to identify constraints for a polytope X = {x ∈ Rn | HXx ≤ hX}
being nonempty (first condition) or empty (second condition).

2.3 Block Triangular Matrices

In this section, we present some properties of block triangular matrices that are used to develop
optimization results later in the dissertation. Several results in this section are presented without

17

proof. The proofs are located in Appendix A.1.
Recall the definition of a triangular matrix:

Definition 2 (Lower Triangular Matrix, [87]). The matrix A ∈ Rn×n is lower triangular if Aij = 0

for all i < j.

A block (lower) triangular matrix will then be defined as follows:

Definition 3 (Block (Lower) Triangular Matrix). The matrix A ∈ Rnl×mp is l × p block lower

triangular if each block Ãij = 0 for all i < j where Ãij = A[il+1:(i+1)l],[jp+1:(j+1)p] (i.e. Ãij is the

(i, j)-th (l × p) block of A.

We can decompose the block triangular matrix using a concept analogous to the principal lead-
ing sub-matrices of a lower triangular matrix.

Definition 4 (Leading Principal Block Submatrix). The i-th leading principal block submatrix of

a l × p block matrix X ∈ Ral×bp, denoted by BMi(X), is the l × p block matrix:

BMi(X) = X[1:il],[1:ip]

for all i ∈ [1,min(a, b)], where X[1:il],[1:ip] indicates the submatrix formed by all entries of matrix

X that are in both the first il rows and the first ip columns.

Several useful properties of the leading principal block matrix operator BMi(·) for block lower
triangular matrices are stated next. Proofs of these statements can be found in A.1.

Lemma 3. Let W,X ∈ Rap×bq, Y ∈ Rbq×cr and Z ∈ Ras×as. The following properties hold:

1. BMi(W +X) = BMi(W) + BMi(X);

2. If X and Y are p × q and q × r block lower triangular, respectively, then BMi(XY) =

BMi(X)BMi(Y);

3. If Z is nonsingular and s× s block lower triangular, then BMi(Z
−1) = (BMi(Z))

−1,

for all i ∈ [1,min(a, b, c)].

Proposition 1. Let C̄(1) and C̄(2) be p × n block lower triangular matrices that share the same

j-th leading block principal submatrix:

BMj(C̄
(1)) = BMj(C̄

(2)).

18

Also let F (1), F (2) be n × p block lower triangular matrices and let S be an n × n block lower

triangular matrix, all with compatible block sizes. Define, for i ∈ {1, 2},

Q(i) .
= F (i)(I − C̄(i)SF (i))−1. (2.2)

Then,

BMj(F
(1)) = BMj(F

(2)) ∈ Rjn×jp

if and only if

BMj(Q
(1)) = BMj(Q

(2)) ∈ Rjn×jp.

Proposition 2. Consider the following pairs of matrices (C̄(1), C̄(2)) and (Q(1), Q(2)) that share

the same j-th principal block leading submatrix amongst each pair

BMj(C̄
(1)) = BMj(C̄

(2)),

BMj(Q
(1)) = BMj(Q

(2))

and consider two vectors f (1) and f (2) and a block lower triangular matrix S. Define, for i ∈
{1, 2}:

r(i) = (I +Q(i)C̄(i)S)f (i). (2.3)

Then, the vectors f (1) and f (2) satisfy:

f
(1)
k = f

(2)
k ∀k ∈ [1, jn]

if and only if the first jn entries of the vector r(1) is identical to that of r(2):

r
(1)
k = r

(2)
k ∀k ∈ [1, jn].

2.4 Types of Dynamical Systems

The discrete-time hybrid system definition given in (1.1) and (1.2) can describe many processes in
the real world (e.g., walking robots, collections of vehicles moving on a highway). This ability to
express many different types of processes makes it often hard to apply formal methods principles
to the general system, so we occasionally restrict our attention to systems with a particular form.
Several of the forms discussed in this dissertation are briefly introduced below for the sake of
completeness. To help with further investigate each of these restricted forms, a list of related
references will be provided at the end of each subsection for the interested reader.

19

Frequently, we will refer to sequences of states of a dynamical system. Such a sequence
x(t0), x(t0+1), ..., x(t0+T) will be abbreviated with x(t0 : t0+T). For computational reasons, this
can be represented as a single vector (i.e. if each state x(k) ∈ Rn, then x(t0 : t0 + T) ∈ Rn(T+1)).

2.4.1 Transition Systems

Definition 5 (Transition System [14]). A transition system TS is a tuple TS = (S,Act,→
, I, AP, L) where

• S is a set of states,

• Act is a set of actions,

• →⊆ S × Act× S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S → 2AP is a labeling function.

The atomic propositions AP and labelling function L are critical to identifying whether or not
there exists a policy that satisfies a desired goal/task. A policy here can be a function which takes
the current state and takes an action that approaches some goal proposition γ : S → Act. A policy
can also take on other forms (e.g. it can observe its history of previous states and use that to make
a decision on how to act).

This relates to the hybrid system (1.1) and (1.2) in the following ways:

• There is no unknown parameter θ.

• There is no continuous state x.

• The state of the system is directly observed (i.e. y(t) = ω(t, q(t)) = q(t)).

• The dynamics are non-deterministic and explained by →, (i.e.
(q(t), u(t), f(q(t), u(t))) ∈→).

As alluded to in the definition, please see the textbook [14] for more information about transition
systems. Adaptive transition systems (an extension that matches some of what is discussed in this
dissertation) are discussed briefly in [133].

20

2.4.2 Linear Systems

2.4.2.1 Linear Systems with Missing Data

We consider discrete-time affine systems with state update and measurement equations defined as:

x(t+ 1) = Ax(t) +Bu(t) + w(t) + k, w(t) ∈ W ,

y(t) =

Cx(t) + v(t), q(t) = 1,

∅, q(t) = 0,
v(t) ∈ V ,

(2.4)

where A,B,C, k are known system matrices, x(t) ∈ X ⊆ Rn is the continuous state, u(t) ∈
U ⊆ Rm is the input, w(t) ∈ W ⊆ Rn is the process noise, y(t) ∈ Y ⊆ Rp ∪ {∅} is the output
measurements of the system, q(t) ∈ B is the discrete state/mode of the system, with q(t) = 1

denoting that the measurement vector is available and q(t) = 0 denoting that the measurement
vector is not available (i.e., “missing”), and v(t) ∈ V ⊆ Rp is the measurement noise. The noise
terms w(t) and v(t) are unknown but bounded, and their bounds are known (i.e.,W = {w ∈ Rn |
∥w∥ ≤ ηw} and V = {v ∈ Rp | ∥v∥ ≤ ηv}). Moreover, we assume that the control input u(t) is
bounded (i.e., U = {u ∈ Rm | ∥u∥ ≤ ηu}).

This relates to the hybrid system (1.1) and (1.2) in the following ways:

• The unknown parameter θ is the missing data pattern.

• The state of the system is noisily observed when the data pattern allows (i.e., when q(t) = 1)
but returns empty set when the data pattern enforces it (i.e. when q(t) = 0).

• The dynamics and measurement equation are normally linear, (i.e. fθ(x(t), u(t), w(t)) =

Aθx(t) +Bθu(t) + w(t) and ωθ(t, x(t), v(t)) = Cθx(t) + v(t) when q(t) = 1).

The definition of this system will be repeated in Chapter 3 for utility.

2.4.2.2 Linear Systems with Unknown Parameters

x(t+ 1) = Aθx(t) +Bθu(t) + w(t), w(t) ∈ Wθ

y(t) = Cθx(t) + v(t), v(t) ∈ Vθ
(2.5)

where θ is the mode of the system taking values in a finite set Θ of models (i.e. θ ∈ Θ), xt is the
state of the system taking values in X , ut is the input at time t that must satisfy input constraints
represented by polytope U (i.e. ut ∈ U), wt is the unmeasured disturbance to the system that lies
in the polytopeWθ (wt ∈ Wθ). The system starts with a fixed, yet unknown, mode θ. It is assumed
that the set Θ (including the matrices Aθ, Bθ and polytopesWθ for each mode) and the polytope U
are known.

21

This relates to the hybrid system (1.1) and (1.2) in the following way:

• There is no discrete state q.

• The dynamics and measurement equations are linear, (i.e. fθ(x(t), u(t), w(t)) = Aθx(t) +

Bθu(t) + w(t) and ωθ(t, x(t), v(t)) = Cθx(t) + v(t)).

2.4.3 Piecewise-Affine (PWA) Systems

A discrete-time, piece-wise affine (PWA) system is a dynamical system

x(t+ 1) = f(x(t), u(t), w(t)) (2.6)

defined over a partition ∪iDi = X such that it is affine over each element of the partition Di. In
math, a PWA system f can be defined as a set f = {(f i,Di)}mi=1 with

f i(x(t), u(t), w(t)) = Aix(t) +Biu(t) +Bi
ww(t) + F (2.7)

and for all states x(t) ∈ Di

f(x(t), u(t), w(t)) = f i(x(t), u(t), w(t)) (2.8)

x(t) is the state of the system, u(t) is the controlled input to the system, w(t) is the uncontrolled
input (disturbance), and the matrices (A,B,Bw, F) are of the appropriate dimensions. The state
space, space of allowed inputs, and the space of feasible uncontrolled inputs are referred to as X ,
U , andW , respectively.

2.5 Invariant Sets

Controlled invariant sets play an important role in ensuring safety of systems with dynamics of the
form (1.1). Formally, a robust controlled invariant set (RCIS) Cinv inside a given safe set Xsafe ⊆ X
(i.e., Cinv ⊆ Xsafe) is a set of states that satisfies:

x ∈ Cinv ⇒ ∃u ∈ U ∀d ∈ D f(x, u, d) ∈ Cinv. (2.9)

In words, this means that if the state x(t) is in Cinv, there is an input u(t) to ensure that x(t + 1)

will be in Cinv for any disturbance within given bounds, thus allowing the states to stay in Cinv

indefinitely.

22

2.5.1 Invariant Set Computation

There are many methods in the literature for computing or approximating controlled invariant sets
[22, 26, 43, 126]. The main computational building block of these algorithms is the one-step

backward reachable set operation, that we denote as Pre(·). For a given set R and dynamics f , the
one-step robust backward reachable set ofR under f is defined as

Pref (R) = {x ∈ X | ∃u ∈ U : f(x, u,W) ⊆ R}. (2.10)

Given a safe set Qsafe, under mild conditions, the following iterations converge from outside to
the maximal controlled invariant set in Qsafe when initialized with C0 = Qsafe:

Ci+1 = Pref (Ci) ∩Qsafe. (2.11)

If the update rule reaches a fixed point, i.e., Ci = Pref (Ci)∩Qsafe, then the solution to that equation
is the maximal invariant set contained inQsafe. On the other hand, although this is a monotonically
non-increasing (in the set inclusion sense) sequence, the iterations are not guaranteed to terminate
in finitely many steps, a problem that can be mitigated by approximation techniques [43, 126].

Alternatively, if one has an initial simple RCIS C0, computed either analytically or numerically,
contained in some safe set Qsafe, this set can be progressively expanded again via the same update
rule (2.11). In this case, we obtain a monotonically non-decreasing sequence of sets Γk

.
=
⋃k

i=1 Ci,
each of which themselves are robustly controlled invariant. Therefore, it can be terminated at
anytime and one would obtain an RCIS. We call this method the inside-out algorithm.

Crucially, for PWA systems and sets described with unions of polytopes, the invariant set com-
putation reduces to a set of polytopic operations. Moreover, when finding the exact Pre(·) is com-
putationally hard, using an under-approximation does not compromise correctness when using the
iterative algorithms in the sense that upon termination, the algorithm still results in an RCIS.

2.5.2 Graph Notation

A directed graph G = (V , E) is a tuple containing a set of vertices V and a set of directed edges E .
Note that each edge is an ordered pair (v1, v2) ∈ E of vertices from V (i.e. v1, v2 ∈ V). We say
that a vertex v1 is connected to a vertex v2 if and only if (v1, v2) ∈ E . By the nature of directed
graphs, v1 being connected to v2 does not mean that v2 is connected to v1.Within directed graphs
the inward connections of a vertex v can be defined as follows:

inG(v) = {v′ ∈ V | (v′, v) ∈ E}.

23

1

2 3

4

5

6

7

8

9

Figure 2.1: An example directed graph G that we use to demonstrate potential links between pro-
cessors in a server farm.

The outward connections of a vertex v can be defined similarly:

outG(v) = {v′ ∈ V | (v, v′) ∈ E}.

24

CHAPTER 3

Correct-By-Construction Control with Missing Data

3.1 Introduction

Recall that one of the real-world limitations of CPSs is that sensor information may be delayed or
lost when sent to a decision maker by things such as communication queues in networks. Some
amount of delay is tolerable, as we see in settings like human driving where a small amount of
delay in the speedometer’s value does not lead to driving failures. Thus, safety in the presence
of sensor uncertainties is typically possible for some classes of uncertainty. Defining classes of
uncertainty for missing data systems, or systems where sensor measurements can be lost when
transmitted to the decision, has been discussed in the past, however has not been applied to guar-
anteed reachability tasks. This chapter attempts to use convex optimization to design estimators
and controllers for guaranteed reachability tasks where the class of uncertainty is defined by a
missing data language (a missing data language is a language over the set B as defined in Section
2.1).

3.2 Problem Statement

As alluded to in the introduction, the goal of this chapter is to design feedback control or estimation
mechanisms that are robust to missing measurements. This section describes the system model
considered, including the missing data patterns. Then, we formally state the problem.

25

3.2.1 Model Description

We consider discrete-time affine systems with state update and measurement equations defined as:

x(t+ 1) = Ax(t) +Bu(t) + w(t) + k, w(t) ∈ W ,

y(t) =

Cx(t) + v(t), q(t) = 1,

∅, q(t) = 0,
v(t) ∈ V ,

(3.1)

where A,B,C, k are known system matrices, x(t) ∈ X ⊆ Rn is the continuous state, u(t) ∈
U ⊆ Rm is the input, w(t) ∈ W ⊆ Rn is the process noise, y(t) ∈ Y ⊆ Rp ∪ {∅} is the output
measurements of the system, q(t) ∈ B is the discrete state/mode of the system, with q(t) = 1

denoting that the measurement vector is available and q(t) = 0 denoting that the measurement
vector is not available (i.e., “missing”), and v(t) ∈ V ⊆ Rp is the measurement noise. The noise
terms w(t) and v(t) are unknown but bounded, and their bounds are known (i.e.,W = {w ∈ Rn |
∥w∥ ≤ ηw} and V = {v ∈ Rp | ∥v∥ ≤ ηv}). Moreover, we assume that the control input u(t) is
bounded (i.e., U = {u ∈ Rm | ∥u∥ ≤ ηu}).

Remark 1. We note that the methods developed in this chapter can be extended to work with

systems that have time-varying matrices in the place of A, B, C, f . However, this case is omitted

for clarity of notation. Similarly, the setsW , V and U can be arbitrary polytopes but for simplicity,

we constrain them to be hypercubes in the rest of the chapter.

The performance of any controller or estimator designed for the system in (3.1) clearly depends
on how much information is received, and yet the evolution of the discrete state q(t) is not included
in (3.1). To model this, we introduce a constraint on the evolution of q(t). If the evolution of
the discrete state is not constrained at all, one possibility is q(t) = 0 for all times, and there
is no measurement for feedback. However, in many applications, it is possible to have a priori
information about admissible missing data patterns (e.g., based on a network device’s specification
sheet or the knowledge about communication protocols that are packet-drop tolerant). To describe
the evolution of the discrete state q(t), we introduce the missing data language L:

Definition 6 (Missing Data Language). A missing data language L ⊆ BT is a set of words q,

called a missing data pattern, that describes the possible trajectories of q(t) in the system (3.1). A

mode signal q = q(t0), q(t0 + 1), . . . , q(t0 + T − 1) is said to satisfy the missing data language L
if q ∈ L.

Remark 2. Other works in the literature have considered representing missing data patterns or

sequences with concepts such as (m, k)-firmness [77, 49] or a bound on the number of consecutive

missing data packets. The representation that we describe here is general enough that it can

express both of these concepts.

26

3.2.2 Problem Statement

In what follows, we describe several constrained control and estimation problems for the system in
(3.1). Designing a controller that enforces certain state constraints or an estimator that guarantees
that estimation error remains bounded is particularly challenging when the controller or estima-
tor does not have access to all measurements for all times. Therefore, we introduce a relaxed
invariance-type objective that we call equalized recovery. Finally, we present a formal unified
problem statement.

An observer or an estimator O : (Y × U × B)∗ 7→ X maps the measured input/output se-
quence and the missing data sequence to an estimate x̂ of the state. In particular, we will consider
Luenberger-like estimator structures of the form:

x̂(t+ 1) = Ax̂(t) +Bu(t)− ue(t) + k,

ŷ(t) = Cx̂(t),
(3.2)

where the injection term ue(t) is the design variable. The constrained estimation problem aims to
impose constraints on the estimation error e(t) = x(t)− x̂(t) by appropriately designing ue(t).

Another problem of interest is that of synthesizing a controller C : (Y × B)∗ 7→ U , where the
design variable is u(t) in (3.1). The goal is to impose constraints on the state of the closed-loop
system, while it is required to respect the constraints on the input imposed by the set U . It is
possible to pose a similar problem for tracking control, where there is a given desired trajectory
xd(t0), xd(t0+1), . . . , xd(t0+T) and its corresponding ud(t0), ud(t0+1), . . . , ud(t0+T −1) such
that xd(t+1) = Axd(t)+Bud(t)+ k, and the objective is to guarantee constraints on the tracking
error ξ(t) .

= x(t) − xd(t). One can also consider imposing constraints on affine functions of the
states.

Both estimation and control synthesis problems can be mapped (with slight modifications) to a
generic constrained control problem on a unified system:

ξ(t+ 1) = Aξ(t) +Bξuξ(t) + w(t) + kξ, w(t) ∈ Wξ,

yξ(t) =

Cξ(t) + v(t), q(t) = 1,

∅, q(t) = 0,
v(t) ∈ Vξ,

(3.3)

where the transformed state ξ(t), the transformed output yξ(t) ∈ Yξ and the transformed input
uξ(t) ∈ Uξ, as well as Bξ, kξ, Uξ, and Yξ represent different signals, matrices and sets depending
on the problem of interest (for the sake of completeness, they are provided in A.2). The proper
objective for both problems is then to design a feedback law for uξ(t) as a function of all previous
outputs {yξ(τ)}tτ=t0

and discrete states {q(τ)}tτ=t0
such the states of the system (3.3) satisfies

27

certain constraints.
Finally, as mentioned earlier, when the measurements can be missing as in (3.3), it is not rea-

sonable to expect that the constraints hold invariantly. For instance in an estimation or tracking
problem, it might be reasonable to allow a larger bound during missing data events. To capture
this, we define a new type of constraint that relaxes invariance.

Definition 7 (Equalized Recovery). A discrete-time dynamical system as in (3.3) is said to achieve

an equalized recovery level M1 with recovery time T and intermediate level M2 ≥ M1 at time

t0 if for any initial state with ∥ξ(t0)∥ ≤ M1, we have ∥ξ(t)∥ ≤ M2 for all t ∈ [t0, t0 + T] and

∥ξ(t0 + T)∥ ≤M1.

Equalized recovery expresses a form of boundedness for the trajectories of the system and can
be viewed as a form of weak “invariance”, where instead of enforcing the set X1

.
= {x | ∥x∥ ≤

M1} being invariant, we relax the invariance condition and allow the states to be in X2
.
= {x |

∥x∥ ≤M2} as long as they recover back to the set X1. Equalized recovery’s interpretation as weak
invariance is somewhat related to multi-set invariance discussed in [10] for switched systems. For
estimation problems, in the special case where M1 = M2 and T = 1, equalized recovery reduces to
equalized performance [27, 28, 102], which essentially states that ∥ξ(t)∥ ≤M1 should be invariant
with ξ being the estimation error.

Remark 3. Instead of imposing equalized recovery on the state ξ(t), it also possible to consider

equalized recovery on a subset or a linear combination of the state, i.e., z(t) = Lξ(t), if desired.

The proposed synthesis solution in Section 3.3 can be slightly modified to account for this in a

straightforward manner. Furthermore, in addition to the infinity norm, we can also consider other

“set templates” such as zonotopes with minor modifications to our proposed solution.

Given all these elements, the problem we are interested in can be formally stated as follows:

Problem 1. Consider a missing data language L ⊆ BT , and a system of the form (3.3), whose

mode signal q(t), t ∈ [t0, t0 + T − 1] satisfies the missing data language L. Given the recovery

level M1, intermediate level M2 ≥ M1, and recovery time T , find a feedback law Γ : (Yξ ×
B)∗ 7→ Uξ such that the system achieves an equalized recovery level M1 with recovery time T and

intermediate level M2.

3.3 Synthesis of a Prefix-Based Feedback

This section addresses the feedback synthesis problem in Problem 1 by developing convex op-
timization problems that can construct affine feedback laws. We start with a commonly used

28

time-based affine feedback law and show how language constraints can be integrated in this. Then,
we present a new feedback structure that updates the gains based on the prefix of the missing
data pattern seen so far and show that prefix-based feedback laws generalize the time-based ones
and, moreover, that the synthesis of prefix-based affine feedback laws can be reduced to a convex
optimization problem. The proofs of the main results are provided in A.3.

3.3.1 Time-Based Feedback Laws and Their Limitations

A common structure for feedback laws, which we call time-based, takes the following form [147]:

uξ(t) = f(t) +
t∑

τ=t0

F(t,τ)yξ(τ). (3.4)

In this chapter, we temporarily ignore the broad definition of f from Chapter 2; temporarily, this
will simply be a time-varying function f : N→ Rm.

Note that if there is a single missing data pattern q(∗) (i.e., the language L has only one word),
one could interpret the system in (3.3) as a linear time-varying system instead of a switched sys-
tem, by defining a time-varying measurement matrix C(t) = 0 when q(∗)(t) = 0, and C(t) = C

when q(∗)(t) = 1, which essentially sets the output to 0 when it is missing. If we define

uξ
.
=
[
uξ(t0)

⊤, uξ(t0 + 1)⊤, · · · uξ(t0 + T − 1)⊤
]⊤

associated with a word q(∗), the feed-
back laws in (3.4) can be written in matrix–vector form as follows:

uξ = f (∗) + F (∗)yξ,

where
f (∗) .

=
[
f(t0)

⊤ f(t0 + 1)⊤ · · · f(t0 + T − 1)⊤
]⊤

(3.5)

and

F (∗) .
=


F(t0,t0) 0 · · · 0

F(t0+1,t0) F(t0+1,t0+1)
...

... . . . 0

F(t0+T−1,t0) F(t0+T−1,t0+1) · · · F(t0+T−1,t0+T−1)

 . (3.6)

The design of feedback laws of the form (3.4), or equivalently finding (F (∗), f (∗)) that guarantees
certain convex constraints on the state and input, is in general a non-convex problem due to the
states of the closed-loop system being a non-convex function of the gains (F (∗), f (∗)). Neverthe-
less, a non-linear change of variables, namely Q-parametrization, is used in [147] to render the
design of such feedback laws a convex problem.

29

Our previous work [131] introduces a method for representing any given language L with a
more difficult language L∗ that satisfies |L∗| = 1. We do this by introducing a partial order for
words q(1), q(2) ∈ BT for arbitrary T as:

q(1) ⪯ q(2) ⇐⇒ (∀i ∈ [1, T])(q
(1)
[i] = 0 =⇒ q

(2)
[i] = 0).

With this partial order, one can derive a word that is uniquely “harder” or “more missing” than
any in the given language L, in the sense of being the least upper bound for the set L. We refer
to this least upper bound as the worst-case word q∗ and the worst-case language is then given
by L∗ .

= {q∗}. Solving for gains (F (∗), f (∗)) associated with {q∗} that guarantees an equalized
recovery level, then, guarantees the same equalized recovery level for any missing data pattern in
L when these gains are used for feedback [131].

However, the timed-based solution based on the use of the worst-case language L∗ has some
limitations. Consider the following language L = {q(1), q(2)} with q(1) = 1011 and q(2) = 1101.
In this case, the worst-case language L∗ can be identified by performing a bitwise AND of q(1) and
q(2): L∗ = {1001}.

Note that in the above example with the language L = {q(1), q(2)}, the discrete state’s value at
time t = t0 + 1 directly describes the word in L that is being executed. i.e., if q(t0 + 1) = 1, then
we know that trajectory q(2) of the discrete state is occurring; otherwise, q(1) is occurring. So, if we
make that identification at time t we use a set of feedback gains that are specific to an individual
word after the second time step instead of the feedback gains designed with L∗. In such a scheme,
the feedback would only need to be open-loop on one time instance. Using a new set of gains
that were specific to a single word in L instead of the worst-case word q∗ would obviously reduce
the recovery level in this case and across a broad number of other examples. On the other hand,
time-based feedback ignores the observed mode sequence so far and tries to be robust against all
words in the language in an open-loop (in the discrete mode) fashion.

The above might indicate that one could simply synthesize a feedback gain for each word q

in the language L and choose the proper gain at runtime to arrive at a less conservative solution,
but the selection of a proper gain can be tricky even in the simple example that was shown above.
Ultimately, we cannot select the exact gain that we need in such a solution because we cannot
know the word that is being executed at the beginning of the time horizon. For instance, in the
example language above, it is impossible to discern which word is occurring after receiving the
measurement at time t0 of q(t0) = 1 because 1 is a prefix of both words in L. This motivates a new
type of prefix-based feedback structure that we introduce in the next subsection.

30

3.3.2 Prefix-Based Feedback Laws

To overcome the limitations of the time-based feedback laws, the feedback laws for the con-
trollers/estimators should have some understanding of the currently observed sequence of the dis-
crete state, which we capture by the following feedback structure,

uξ(q[t0:t]) = f(t, q[t0:t]) +
t∑

τ=t0

F(t,τ,q[t0:t])
yξ(τ), (3.7)

We call this a prefix-based feedback law. Similarly, estimators (3.2) and controllers with injection
terms or outputs in the form (3.7) are called prefix-based estimators and prefix-based controllers,
respectively.

While the time-based solutions use the available (non-missing) output measurement history,
{yξ(τ)}tτ=t0

, for feedback, prefix-based feedback laws use both the output history and the discrete-
state history, {yξ(τ)}tτ=t0

and {q(τ)}tτ=t0
. By its definition, it essentially also performs estimation

at the discrete-level (or online model detection) to detect which missing data pattern in L is active
and adapts the filter gains accordingly. Whereas, the time-based estimator/controller is agnostic
to the missing data pattern and tries to be robust rather than adaptive. The following proposition
formally captures the fact that prefix-based estimators/controllers are more general than time-based
estimators/controllers.

Proposition 3. For any time-based feedback law for the dynamical system in (3.3) with missing

data pattern given by a fixed-length language L, identical performance can be obtained using a

prefix-based feedback law.

Proof. Let the transformed input term for the time-based feedback law be

uξ(t) = f̄(t) +
t∑

τ=t0

F̄(t,τ)yξ(τ). (3.8)

Define the gains of the prefix-based feedback law’s transformed input term in (3.7) as f(t, λ)
.
=

f̄(t), F(t,τ,λ)
.
= F̄(t,τ) for all t ∈ [t0, t0 + T − 1], τ ∈ [t0, t] and for all λ ∈

⋃
q∈L Pref(q). Then

the two feedback laws are equivalent.

In order to design prefix-based feedback gains, we associate with each word q(i) ∈ L a pair
of gain matrices (F (i), f (i)) defined as in (3.5)–(3.6). However, since at run-time we do not know
which word q(i) is active, we enforce some constraints on the gain matrices of words sharing

31

prefixes as follows:

(p ∈ Pref(q(i)) ∩ Pref(q(j))) =⇒
(
BM|p|(F

(i)) = BM|p|(F
(j))
)

∧
(
(f (i))1:|p|m = (f (j))1:|p|m

)
,
∀q(i), q(j) ∈ L. (3.9)

Moreover, we utilize the constrained optimal control approach in [147] to jointly solve for all
(F (i), f (i)), which involves the use of Q-parametrization to convert the non-convex problem into a
convex one. However, it is well known that Q-parametrization does not generally lead to convex
problems when additional structure on the gains F (i) and f (i) are imposed. One of our main results
is thus to show that the prefix dependency of the gains in (3.9) still leads to a convex problem when
using Q-parametrization. More precisely, in the following theorem, we will present a bijection
relationship between the constraints (3.9) on the gain matrices/vectors of prefix-based feedback of
the form in (3.7) with the parametrization in (2.2) and (2.3). Hence, the convexity of the corre-
sponding Q-parametrization is preserved when imposing the prefix dependency constraints.

Theorem 1. Given a prefix-based estimator/controller with the transformed input term (3.7), we

associate with it block matrices {(F (i), f (i))}|L|i=1 formed from the filter gains, where for all q(i) ∈ L,

the (j, k)-block entry F
(i)
jk of F (i) is defined as

F
(i)
jk

.
= F

(t0+j−1,t0+k−1,q
(i)
[1:j]

)
(3.10)

∀k ∈ [1, j], ∀j ∈ [1, T], and F
(i)
jk = 0 otherwise; and the j-th block entry of the feedforward term

f (i) is defined as

f
(i)
j

.
= f(t0 + j − 1, q

(i)
[1:j]) (3.11)

∀j ∈ [1, T]. Let S and C̄(i) be as:

C̄(i) .
=
[
diag(q(i))⊗ C 0pT×n

]
,

S
.
=



0 0 · · · 0

Bξ 0 · · · 0

ABξ Bξ · · · 0
...

... . . . 0

AT−1Bξ AT−2Bξ · · · Bξ


.

(3.12)

Then, Eqs. (2.2) and (2.3) define a bijection such that any estimator {(F (i), f (i))}|L|i=1 is paired

32

with one and only one element in the polyhedral set:

Q(L) .
=

{(Q(i), r(i))}|L|i=1

∣∣∣∣∣∣∣
Q(i) is block lower diagonal, ∀i,

(p ∈ Pref(q(i)) ∩ Pref(q(j))) =⇒
(
BM|p|(Q

(i)) = BM|p|(Q
(j))
)

∧
(
(r(i))1:|p|m = (r(j))1:|p|m

)
,
∀q(i), q(j) ∈ L

 .

(3.13)

Using the above theorem, a necessary and sufficient condition for the existence of prefix-based
estimators and controllers that solve Problem 1 can then be formulated as follows:

Theorem 2 (Estimator and Controller Synthesis with Missing Data (Prefix-Based)). There exists

a prefix-based estimator/controller (i.e., {(F (i), u
(i)
0)}|L|i=1) that satisfies equalized recovery with

parameters (M1,M2,L) if and only if the following robust linear programming problem is feasible:

Find
{
(Q(i), r(i))

}|L|
i=1
∈ Q(L) (3.14a)

subject to
∀(∥w∥ ≤ ηw, ∥v∥ ≤ ηv, ∥ξ(t0)∥ ≤M1) :

∥uξ + ud∥ ≤ ηu, ∥ξ(i)∥ ≤M2 and ∥
[
0n×nT In

]
ξ(i)∥ ≤M1,

∀i ∈ [1, |L|],

(3.14b)

where

ξ(i) = (H + SQ(i)C̄(i)H)w + SQ(i)N (i)v + (I + SQ(i)C̄(i))(Jξ(t0) +Hk̃) + Sr,

uξ = Q(i)C̄(i)Hw +Q(i)N (i)v +Q(i)C̄(i)(Jξ(t0) +Hk̃) + r,
(3.15)

C̄(i) and S are defined in (3.12), Q(L) is as defined in (3.13), (3.16)

N (i) = diag(q(i))⊗ I, k̃ = 1T ⊗ kξ, (3.17)

J
.
=



In

A
...

AT−1

AT


, H =



0 0 · · · 0

In 0 · · · 0

A In · · · 0
...

... . . . 0

AT−1 AT−2 · · · In


. (3.18)

Remark 4. The above feasibility problem can be modified to minimize the intermediate level M2

subject to a given equalized recovery level M1 and given missing data language L, which can be

easily shown to be a robust linear program over the decision variables
{
(Q(i), r(i))

}|L|
i=1

and M2.

Since the feasibility problem in (3.14) contains semi-infinite constraints due to the “for all”
quantifier on the uncertain terms, the problem is not readily solvable. However, as in [131], tech-
niques from robust optimization and duality [20, 23] can be applied to obtain a linear programming

33

(LP) problem with only finitely many linear constraints. In particular, we have the following theo-
rem:

Theorem 3 (Robustified Estimator and Controller Synthesis with Missing Data (Prefix-Based)).
The feasibility of prefix-based finite horizon affine estimators and controllers that solve Problem 1

is equivalent to the feasibility of the following linear optimization problem:

Find
{
(Q(i), r(i))

}|L|
i=1
∈ Q(L),

{
(Π

(i)
1 ,Π

(i)
2 ,Π

(i)
3)
}|L|

i=1

subject to ∀i ∈ [1, |L|], q(i) ∈ L,
Π

(i)
1 ≥ 0,Π

(i)
2 ≥ 0,Π

(i)
3 ≥ 0,

Π
(i)
1

 ηw1ηv1

M11

 ≤M21−

[
I

−I

]
(Sr(i) + (I + SQ(i)C̄(i))Hk̃),

Π
(i)
2

 ηw1ηv1

M11

 ≤M11−

[
I

−I

] [
0n×nT In

]
(Sr(i) + (I + SQ(i)C̄(i))Hk̃),

Π
(i)
3

 ηw1ηv1

M11

 ≤ ηu1−

[
I

−I

]
(r(i) +Q(i)C̄(i)Hk̃ + ud),

Π
(i)
1 Pη =

[
I

−I

]
G(i), Π

(i)
2 Pη =

[
I

−I

] [
0n×nT In

]
G(i), Π

(i)
3 Pη =

[
I

−I

]
G̃(i),

(3.19)

where k̃, J , H and N (i) are as defined in (3.17) and (3.18), C̄(i) and S are as defined in (3.12),
Q(L) is as defined in (3.13), and

G(i) =
[
(I + SQ(i)C̄(i))H SQ(i)N (i) (I + SQ(i)C̄(i))J

]
,

G̃(i) =
[
Q(i)C̄(i)H QN (i) Q(i)C̄(i)J

]
,

Pη =



I 0 0

−I 0 0

0 I 0

0 −I 0

0 0 I

0 0 −I


.

34

Moreover, if (3.19) is feasible, then we may invert the mappings in (2.2) and (2.3) to obtain:

F (i) .
= (I +Q(i)C̄(i)S)−1Q(i), (3.20)

f (i) .
= (I +Q(i)C̄(i)S)−1r(i), (3.21)

and we can establish that

1. Each F (i) is block lower triangular;

2. For all λ ∈ Pref(q(i)) ∩ Pref(q(j)), we have BM|λ|(F
(i)) = BM|λ|(F

(j)) and f
(i)
k = f

(j)
k

for all k ∈ [1 : |λ|n];

3. A prefix-based estimator or controller solving Problem 1 is defined by

uξ(λ) = f(t, λ) +
t∑

τ=t0

F(t,τ,λ)yξ(τ), (3.22)

where λ ∈
⋃

q(i)∈L Pref(q(i)), t .
= t0 + |λ| − 1, and the matrices F(t,τ,λ) and f(t, λ) are

defined according to (3.10) and (3.11).

3.4 Discussions

In this section, we discuss how the proposed finite-horizon estimators and controllers can be im-
plemented. We also highlight the relation between equalized recovery and more familiar notions
of detectability and stabilizability.

3.4.1 Implementation Strategies

Assuming that the optimization problems proposed in the previous section have a feasible solution,
there are multiple scenarios in which the estimator or controller can be applied. First, if the problem
under consideration is one that is finite horizon, we can directly use the obtained gains. Second,
if the missing data pattern repeats itself with a period of T time-steps, then the same gains can be
used with period T since they guarantee that the recovery period M1 is reached at the end of the
period.

Alternatively, the gains can be used in conjunction with an estimator that guarantees equalized
performance or a controller that guarantees forward invariance of M1 level when there is no miss-
ing data. In particular, if we consider languages L with words that start with a q(t) = 0, then

35

we can switch from the equalized performance estimator/invariance controller to equalized recov-
ery one whenever a missing measurement occurs and revert back to the equalized performance
estimator/invariance controller after the recovery time T .

In addition, instead of using hypercubes as set templates due to our use of infinity norms, we
could also use more flexible set templates, e.g., zonotopes. The incorporation of such set templates
may be done using linear constraints as described in [135].

3.4.2 Relationship to Detectability and Stabilizability

In particular, we state the results in terms of the recent detectability definition for linear systems
with data loss events [79]. Similar results also hold true for stabilizability. Consider a system:

x(t+ 1) = Ax(t),

y(t) =

Cx(t), q(t) = 1,

∅, q(t) = 0.

(3.23)

This is the same as the system model in (3.1) with input and noise terms omitted. We denote a
system of the form (3.23) subject to a missing data language L ⊆ Bω consisting of infinite words
(hence the superscript ω) as (A,C,L). Detectability of such a system is defined as follows [79]:

Definition 8 (Missing Data Detectability). The system (A,C,L) is said to be detectable if for any

(infinite-length) q ∈ L and any initial state x0 ∈ Rn with y(t, x0, q) = 0 for all t ∈ N, it holds that

x(t, x0, q) → 0 as t → ∞, where y(t, x0, q) and x(t, x0, q) are the output and state, respectively,

at time t when the initial state is x0.

In the following, we show that the existence condition for an equalized recovery estimator is
a strict superset of the missing data detectability property defined above. First, we prove that the
detectability of a system with missing data implies that an equalized recovery estimator exists and
then, we provide an example where an equalized recovery estimator exists even when the system
is not detectable. The proofs of these propositions are given in A.4.

Proposition 4. If a system in the form of (3.23) with a missing data language L, is detectable

according to Definition 8, then for any recovery level M1 > 0, there exist an intermediate level

M2 ≥ M1 and a recovery time T ∈ N such that there exists an estimator that achieves equalized

recovery for the estimation error with these parameters for the missing data language L′ = {q |
|q| = T, q ∈ Pref(L)}.

Moreover, equalized recovery is slightly more general than detectability as stated next.

36

Proposition 5. The set of discrete-time systems in the form (3.23) for which an estimator ex-

ists whose state estimation error satisfies equalized recovery is a strict superset of all detectable

discrete-time systems with missing data.

3.5 Examples

In this section, three different examples are used to illustrate important properties of the theory
presented above. First, the improvement of prefix-based estimators over our previous work’s time-
based estimation is visualized by revisiting an example from [131]. Second, prefix-based con-
trollers are utilized to discuss the problem of guaranteeing safety of a lane-keeping system when
its sensors have missing data events. Finally, the scalability of these methods is shown with a
multi-agent tracking problem where a group of followers attempts to follow a leader down a nar-
row passageway.

3.5.1 Estimator Synthesis

In vehicle safety systems, there are many state estimation problems that must be solved within a
finite time horizon (e.g., a vehicle that would like to understand where other vehicles are on the
road before merging into a lane or exiting the highway). In these situations, a vehicle’s safety (and
the safety of its occupants) relies on execution of a maneuver within a time limit, T , because if a
vehicle waits too long, it may miss its opportunity to continue towards its destination or the lane
may end. One method of guaranteeing safety during such a maneuver is to provide bounds on how
“good” the estimates of the other vehicles in the environment are during the time window. If the
maneuver can be executed without entering any of the sets defined by our bounded error estimates
of the other vehicles, then the vehicle can be guaranteed to be safe.

The Adaptive Cruise Controller is a driver assistance system which controls the acceleration
of the user’s car (the ego car) with two objectives: (i) to maintain a desired speed, if there is no
vehicle in front of it, and (ii) to maintain a safe following distance, if there is a vehicle in front of
it. Typically implemented with a radar or computer vision system, the adaptive cruise controller
is a hybrid controller, but when considering the estimation error system we may analyze only the
following linear system:

ξ(t+ 1) = Aξ(t) + ue(t) + Ew(t), w(t) ∈ {w ∈ R3 | ∥w∥ ≤ ηw},

yξ(t) =

Cξ(t) + v(t), q(t) = 1,

∅, q(t) = 0,
v(t) ∈ {v ∈ R2 | ∥v∥ ≤ ηv},

(3.24)

37

where ξ(t) = [∆ve(t),∆h(t),∆vL(t)]
T is the estimation error state, consisting of the error in the

speed ve of the ego vehicle, headway h, and speed vL of the lead vehicle. Each matrix in (3.24) is
defined as

A =

 e−κTs 0 0
e−κTs−1

κ
1 Ts

0 0 1

 , C =

[
1 0 0

0 1 0

]
, E =

[
0

T 2
s

2
Ts

]
,

with κ ≜ k̄1/m. Considering the parameter values selected in Table 3.1, one can completely define
the system above. Then, when given a missing data language L and a set of parameters M1 and
M2, we can pose this in the estimator synthesis form of Problem 1.

We will discuss the results of synthesis when considering the following language:

L1 =
{
q ∈ B6

∣∣ (q[1] = q[6] = 1) ∧ (∃1i ∈ [2, 5] s.t. q[i] = 0)
}

=
{

101111, 110111, 111011, 111101, 111111
}
,

where the symbol ∃1i indicates that there may exist up to one such element i. For this language,
the worst-case language L∗

1 can be found to be L∗
1 = {100001}.

For the language L1 and the recovery level M1 = 1, the minimal value of the intermediate
level M2 is found using Remark 4 and Theorem 3. In contrast, another solution to the problem
can be obtained using time-based feedback, the worst-case language L∗

1, and Theorem 3 via a
robust optimization similar to that of (3.14). From the intuition described in Section 3.3, we expect
that the prefix-based estimator can in general guarantee tighter estimation error bounds than the
time-based estimator. A comparison is shown and discussed in more detail within Figure 3.1 for
the Adaptive Cruise Control example. In both cases, the system is initialized with random initial
conditions and disturbances that satisfy the specified sets.

The time-based estimator’s optimization required 1999 free variables and 0.2489 s to solve
when using Gurobi [63], while the prefix-based estimator’s optimization required 7993 free vari-
ables and 0.3637 s to solve.

Table 3.1: Constants used in the Automatic Cruise Control (ACC) Example.

m 1370 kg Ts 0.5 s
k̄0 7.58 N ηw 0.1
k̄1 9.9407 Ns/m ηv 0.05

38

0 1 2 3 4 5 6

Time Index

0

0.5

1

1.5

2

2.5

3

Prefix-Based Observer with Minimized M
2

0 1 2 3 4 5 6

Time Index

0

0.5

1

1.5

2

2.5

3

(Pseudo) Time-Based Observer with Minimized M
2

Figure 3.1: Estimation error levels achieved by prefix-based (left) and time-based (right) estimators
for the adaptive cruise control system. The minimum M2 value for which equalized recovery is
feasible, with M1 = 1 and T = 6, is found by solving the robust linear program for the prefix-
based and time-based feedback laws. The optimal M2 that the prefix-based feedback can guarantee
is M2 = 1.1498 while the optimal M2 that the time-based feedback can provide is M2 = 2.9864.

3.5.2 Controller Synthesis

Consider an automatic lane-keeping system. In such a system, one can imagine that the system
has an estimate (with bounded error) of the vehicle’s lateral position with respect to the center of
the lane. Estimates might come from a computer vision system or other noisy sensors and thus can
be subject to glare or misidentification of lane boundaries. This is where missing data events can
arise.

In this system, instead of making estimates about where the vehicle is, we will try to control it
so that it remains near the center of the lane. The simplified lane keeping model is defined by the
following double integrator system:

ξ(t+ 1) =

[
0 1

0 −20

]
ξ(t) +

[
0

1

]
u(t) +

[
1

0

]
w(t), w(t) ∈ W .

= {w ∈ R | |w| ≤ 0.05}

yξ(t) =

ξ(t) + v(t), q(t) = 1,

∅, q(t) = 0,
v(t) ∈ V .

= {v ∈ R2 | ∥v∥ ≤ 0.1},
(3.25)

where the state ξ(t) = [xc(t), ẋc(t)]
T consists of the deviation xc(t) from the centerline of the lane

and the lateral velocity ẋc(t), and the control input u(t) is the lateral force applied through steering.
Again, the trajectory of q(t) is defined by a missing data language L which would come from

the properties of the roads that the autonomous vehicle operates on as well as the specifications of
its sensors. With all of the above information, the problem of guaranteeing safety can be posed as

39

0 0.2 0.4 0.6 0.8 1 1.2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Road Boundary

Road Boundary

Road Centerline

0 0.2 0.4 0.6 0.8 1 1.2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Road Boundary

Road Boundary

Road Centerline

Figure 3.2: Consider any one of the panels above. In each panel, multiple trajectories of the lane
keeping system are visualized, where each trajectory is initialized at the same state on the M1 = 0.3
hypercube’s boundary and experiences the exact same disturbance (a carefully chosen, maximum
norm disturbance). The only thing that varies across each trajectory is the missing data pattern
σ. Thus, what causes the trajectories to diverge is how the prefix-based controller handles these
missing data events when they happen. Regardless of the missing data pattern, it is shown that
these adversarily chosen initial conditions and disturbances can still be guaranteed to return to the
desired level M1 and the system achieves equalized performance.

follows: Given that the vehicle state starts near the center of the lane with near zero lateral velocity,
can we design a prefix-based feedback controller such that the vehicle never deviates outside of
the lane boundaries despite missing data events from L?

The formal interpretation of such a problem would be that given some specification of the initial
position (i.e., our M1 value), the lane width, along with the disturbance sets W and V and the
missing data model L, find a feedback law (3.7) such that the decision variable M2 is minimized.
If the minimal M2 is below the lane width value, we can guarantee that the system will not deviate
from the center of the lane when using our controller during a missing data event from L.

Consider the system in (3.25), with the following missing data language:

L2 =

q ∈ B12

∣∣∣∣∣∣∣ ∃1i ∈ [1, 10] s.t.
(q[i] = 0) ∧
(q[i+1] = 0) ∧
((j ̸= i) ∧ (j ̸= i+ 1) =⇒ q[j] = 1)

 .

Let the initial state of the lane keeping system be within an infinity norm ball of radius M1 =

0.3. Given that the process disturbances come from the set W = {w ∈ R | |w| ≤ 0.05} and
the measurement disturbances come from the set V = {v ∈ R2 | ∥v∥∞ ≤ 0.1}, we synthesize
a controller that minimizes the worst case deviation from the center of the lane. Note that the
disturbance set V is overly conservative (most sensors can detect the lane boundaries of a lane to
a precision of 0.01 m), but this is meant to simply show one of the many possible settings that the
controller synthesis framework can handle.

40

In Figure 3.2, we illustrate how some of the trickier initial conditions are handled. The figure
contains multiple trajectories. Each trajectory begins with the same state on the boundary of the
M1 norm ball and experiences identical disturbances from the sets W and V . The aspect that
changes between each trajectory is the missing data pattern (which leads to different prefix-based
feedback). One can see that for some of the hardest missing data patterns, the deviation from the
center of the lane gets very close to the edge of our guarantee set (i.e., the boxes of width M2), but
always recovers to the proper level in the end.

This synthesis problem contained 46,773 free variables and was solved after 2.5420 s with
Gurobi [63].

3.5.3 Controller Synthesis: Formation Control

Finally, we consider the problem of coordinating the movement of a fleet of agents through an
obstacle filled environment. Precisely controlling formations of controlled agents has become
very important across multiple domains including space exploration and disaster relief. For ex-
ample, when using microsatellites to obtain many spacially distributed observations during orbit,
maintenance of specific formations allows the devices to spend less fuel while achieving their mis-
sion [153]. In these contexts and many others, carefully controlled formations of the fleet make it
easier to achieve a task and decrease the probability of collision with obstacles (e.g., space debris,
other satellites).

Unfortunately, while navigating through obstacle-filled fields, localization methods that are
based on a relative navigation sensing system or computer vision algorithms may experience miss-
ing measurements. In the following example, we show how a prefix-based control strategy for
formations of such agents can be used to guarantee safe navigation of a narrow channel while
maintaining a formation close to the desired one.

Consider the problem of designing a controller for a set of nr · nc agents with single-integrator
dynamics moving in a two-dimensional plane. The agents seek to align themselves in nr rows
and nc columns behind an uncontrolled lead agent (forming a grid). The rows are defined such
that there are nc agents in each row and the space between agents in a given row is always 2
m. Furthermore, the rows are organized in the y-direction such that they are evenly distributed
between ℓy + 1 and ℓy − 1 where ℓy is the y-component of the leader’s position.

The lead agent is moving with unknown, but bounded actions within the setW = {w ∈ R2 |
∥w∥ ≤ 1.5}. The following agents’ movement can be defined in terms of error states in the x

and y directions, e(i,j)x (t)
.
= x(i,j)(t) − x̄(i,j)(t) and e

(i,j)
y (t)

.
= y(i,j)(t) − ȳ(i,j)(t), representing

the difference in the (i, j)-th follower’s x- and y- positions from its desired formation (i.e., grid)
position.

41

In this work, the formation is maintained by every first agent in the row (any agent with j = 1

observing/sensing the states of the leader) and all other agents observing/sensing the states of the
agent before it (agent j measures the position of agent j − 1). When the desired states are known
to be a constant offset from the leader’s position or positions of other agents, the system may be
written as follows:

e(i,j)x (t+ 1) =

(u
(i,j)
x (t)− wx(t)) ·∆t, j = 1,

(u
(i,j)
x (t)− u

(i,j−1)
x (t)) ·∆t, otherwise,

e(i,j)y (t+ 1) =

(u
(i,j)
y (t)− wy(t)) ·∆t, j = 1,

(u
(i,j)
y (t)− u

(i,j−1)
y (t)) ·∆t, otherwise,

ye,i(t) =


e(i,j)x (t)

e
(i,j)
y (t)

+ vi(t), q(t) = 1,

∅, q(t) = 0,

where the discretization step ∆t is 0.1 s, the measurement disturbances vi(t) come from the set
V .

= {v ∈ R2 | ∥v∥ ≤ 0.5} for all i and the input of the (i, j)-th agent as instantaneous speed in
the x or y direction is written as u(i,j)

x (t) and u
(i,j)
y (t), respectively.

In Figures 3.3 and 3.4, the followers (black drones) are behind the leader (maize and blue drone)
as the leader moves from left to right through a narrow passage, where localization information is
sometimes dropped according to the language L3:

L3 =


11111111, 01111111,

00111111, 10111111,

01011111, 11011111

 .

The worst-case language in this case is L∗
3 = {00011111}. A time-based controller using L∗

3 in
this channel would have to adopt an open-loop strategy for the first three time steps and could not
guarantee that the followers would avoid collision (see Figure 3.3), but the prefix-based controller
maintains the state error within a safe bound throughout the channel (see Figure 3.4).

The 2 × 2 version of this problem contained 1519 free variables and was solved in 10.9708 s
with Gurobi [63]. To illustrate the scalability of our control synthesis method, the solution time
for this problem is compared in Table 4.2, where the number of following agents is varied. These
simulations show that our proposed approach does involve longer computation times when the
number of states are increased. Note, however, that our control synthesis is done offline and the
computation time is thus not a critical limiting factor.

42

Figure 3.3: A time-based controller using the worst-case language could not guarantee that the
followers would safely exit the channel. It can guarantee that followers (black drones) will remain
in the black outline defined by M2 = 2 which overlaps with the red wall (thus collisions may
happen)

Figure 3.4: While in the channel, the system experiences missing data events according to language
L3, but a prefix-based controller can guarantee that the followers (black drones) will travel through
the channel without colliding with either wall (M2 = 1.3 and the black outline does not ever touch
the red wall)

43

Table 3.2: Analysis of the control synthesis time when the number of controlled agents increases.

Number of Followers Average Solver Time (s)
4 (2× 2 grid formation) 7.55
9 (3× 3 grid formation) 51.60
16 (4× 4 grid formation) 122.56

44

CHAPTER 4

Synthesis of Finite-Horizon Adaptive Controllers for
Hybrid Systems Using Bilinear Optimization

4.1 Introduction

Recall that one of the real-world limitations of CPSs is that their dynamics model may contain some
parameters which the decision-maker is initially uncertain about. The parameters are uncertain
when a CPS interacts with a large variety of objects or people on a regular basis (e.g., a robotic
arm that must organize a large variety of toys in a room). We model this variety with different,
but a priori known models in this chapter. For this set of known models or modes, we develop
an estimator that can produce set-valued estimates of the true model for the system when given a
history of state measurements and input data. This estimator is then incorporated into an adaptive
controller and we describe how an adaptive controller with this structure can be designed to satisfy
a guaranteed reachability task using bilinear optimization.

4.2 Problem Formulation

In this chapter, we consider the linear system with unknown parameters from Section 2.4.2.2.
Recall that this is of the form:

x(t+ 1) = Aθx(t) +Bθu(t) + w(t) w(t) ∈ Wθ (4.1)

where θ is the mode of the system taking values in a finite set Θ of models (i.e. θ ∈ Θ), xt is the
state of the system taking values in X , ut is the input at time t that must satisfy input constraints
represented by polytope U (i.e. ut ∈ U), wt is the unmeasured disturbance to the system that lies
in the polytopeWθ (wt ∈ Wθ). The system starts with a fixed, yet unknown, mode θ. It is assumed
that the set Θ (including the matrices Aθ, Bθ and polytopesWθ for each mode) and the polytope U
are known. We are interested in the following problem.

45

Problem 2. Given a system of the form (4.1), an initial condition x(0), a time horizon T , and a

polytopic target set XT , find a controller γ : X × (X × U)∗ → U such that, no matter what θ ∈ Θ

is the active model, the state of the closed loop system reaches the target set XT at time T for any

possible disturbances inWθ.

Remark 5. Without much modification, the assumption that the initial state x0 is known can be

replaced with the initial state belonging to a set X0 (i.e. X0) and the results of this chapter will

still hold. The rest of this chapter utilizes the assumption that the initial state is known to avoid

over-complicating the exposition.

If one can find a controller that can robustly achieve the reachability task, agnostic of σ, this
would solve the Problem 2. However, as we demonstrate with the system in the next example, such
robust controllers might not always exist.

Example 1. Consider the following two mode system (i.e. |Θ| = 2), where (A1, B1,W1) =

(1, 1, [0.1, 0.3]) and (A2, B2,W2) = (1, 1, [−0.3,−0.1]). Note that the only difference between

these one-dimensional systems is the disturbance set which has the same width in both cases, but

is centered on different values. Let the target set be XT = [−0.1, 0.1], with T = 2, input set be

U = [−0.5, 0.5], and the initial state x(0) = 0. Then, a control strategy of the form u(0) = 0 and

u(1) =

−x(1)− 0.2 if x(1) > 0

−x(1) + 0.2 if x(1) < 0
will solve the problem. This strategy essentially identifies the

mode in the first step and applies an appropriate controller depending on the mode. On the other

hand, there is no controller that can robustly achieve the control objective in a way that is agnostic

to the mode since such a controller needs to be robust to all disturbances in the set [−0.3, 0.3],
which is the convex hull of the union of the disturbance sets.

Controllers such as the one described in Example 1 can satisfy the task by passively observing
the systems trajectory (i.e. applying zero input) for a few time indices and then executing a strategy
for a single mode. We know, however, that not all systems can be treated that way. The system
identification and mode discrimination literature is rife with examples such as the following, where
a sequence of inputs need to be carefully chosen in order to discriminate the true mode of the
system.

Example 2. Consider the following two mode system (i.e. |Θ| = 2), where (A1, B1,W1) =

(1, 1, [−0.5, 0.5]) and (A2, B2,W2) = (−1, 1, [−0.5, 0.5]). The only difference between the two

systems is the sign of the A matrix. Let the target set be XT = [−1, 1] with T = 4, the input

set U = [−5, 5] and the initial state x(0) = 0.25. The initial state satisfies ∥x(0)∥ ≤ 0.25,

which implies that the system can not be identified at time t = 1 regardless of the input. The initial

disturbance w(0) can always be chosen such that w(0) = −x(0) which makes mode discrimination

46

impossible. But by choosing a large enough input at time t = 0, the controller can place the system

at a state x(1) from which it is possible to identify the system at time t = 2.

In the above example, the mode discrimination approach will be able to discriminate the true
mode of the system using a non-arbitrary sequence of inputs and can then achieve the task. How-
ever if the goal was to stay close to the origin at time T = 2, the discriminating strategy might
render the reachability objective impossible. There is yet another class of models Θ where mode
discrimination itself is impossible. For such systems, an adaptive controller should not be designed
with the goal of guaranteed mode discrimination, but should instead do some combination of op-
portunistic discrimination and robust control to solve Problem 2. The following example is such a
collection.

Example 3. Consider the following two mode system with (A1, B1,W1) = (1, 1, [−1, 0.5]) and

(A2, B2,W2) = (1, 1, [−0.5, 1]). Note that the only difference between these one-dimensional

systems is the disturbance set which has the same width in both cases, but is centered on different

values. Let the initial state be x(0) = 2. Both disturbance sets share some common values

[−0.5, 0.5] and thus it is impossible to guarantee that one can discriminate between the two of

them. However if the target set to be reached is wide enough (e.g., XT = [−1, 1]) and there is

sufficient input authority (e.g., U = [2, 2]), a simple linear controller γ(x) = −x achieves the task

robustly for any T ≥ 1.

As we see from these examples, neither being agnostic to the mode, nor trying to identify the
model first might be the best strategy, depending on the problem in hand. Motivated by this fact,
we want to design an adaptive controller that can adjust its gain based on an estimate of the mode
as needed subject to a given exploration-exploitation profile. Rather than searching for arbitrary
adaptive controllers, we will search through a set of adaptive controllers that have an estimator
and a controller with linear gains that are adapted based on the output of the estimator as pictured
in Figure 4.1. Thus, we will obtain a sufficient condition to Problem 2. We note that similar
estimation based control structures have been used for safe control of hybrid systems [159] but not
in the context of adaptive control.

4.3 Estimator Structure

In this section, the first part of the proposed adaptive controller in Figure 4.1, the mode estimator µ,
is introduced. The mode estimator is a set valued function. We also define two sets that relate the
estimator’s output over time (an estimation sequence) to state-input trajectories that can generate
similar estimates.

To help with the definition of the mode estimator, consider the following reachable set:

47

Mode Estimator
µ(x0:t, u0:t−1)

Internal Controller
γ̃(m0:t, x0:t, u0:t−1)

x0:t, u0:t−1 ut

γ(M)(x0:t, u0:t−1)

Figure 4.1: The structure of a consistent belief controller γ which, at each time, receives the
external behavior (x(0 : t), u(0 : t− 1)) and produces the control input u(t).

Definition 9. The reachable behavior set of mode θ at time t is

R(θ, t) =

(x(0 : t), u(0 : t− 1))

∣∣∣∣∣∣∣∣∣∣
x(0) ∈ X0,

u(0 : t− 1) ∈ U t,

∀k ∈ [0, t− 1],

x(k + 1)− Aθx(k)−Bθu(k) ∈ Wθ

 (4.2)

The reachable behavior set is the set of all state-input trajectories that can be produced by the
mode σ.

We use a simple set-membership mode estimator µ : X × (X × U)∗ → 2Θ defined as:

µ(x(0 : t), u(0 : t− 1)) ≜ {θ ∈ Θ | (x(0 : t), u(0 : t− 1)) ∈ R(θ, t)} (4.3)

In words, the mode estimate µ(x(0 : t), u(0 : t− 1)) at time t is a set containing all modes that
could produce the observed behavior (x(0 : t), u(0 : t − 1)). We also say that µ(x(0 : t), u(0 :

t − 1)) at time t contains all modes that are consistent with the observed behavior up to time t.
Note that, by this definition, the first estimate is always µ(x(0)) = Θ. To simplify notation, we
denote the output of the mode estimator at time t with µ(t) (i.e. µ(t) ≜ µ(x(0 : t), u(0 : t − 1)))
and a sequence of estimates with µ(0 : t) as is done for the state and input.

Remark 6. The estimator (4.3) can be naively implemented by, at each time and for each mode,

checking if state-input data is contained in an appropriately constructed polytope (one per mode)

given in (4.3). Since the length of the state-input data grows with time, so does the dimension of

polytopes in (4.3) for the naive implementation. Yet, it is also possible to implement an equivalent

estimator recursively by using the estimate µ(t− 1) at time t in a way to avoid this growth:

µ(t) ≜ {θ ∈ µ(t− 1) | x(t)− Aθx(t− 1)−Bθu(t− 1) ∈ Wθ} . (4.4)

We will be interested in the set of all state-input trajectories (x(0 : t), u(0 : t − 1)) that would

48

produce a given estimate µ(0 : t), which motivates the next definition.

Definition 10 (Consistency Set). Consider a vector m ∈ (2Θ)t. The consistency set C(m) is the

set of all state-input trajectories (x(0 : t), u(0 : t− 1)) that lead to the estimate m. That is:

C(m) = {(x(0 : t), u(0 : t− 1)) |m = µ(x(0 : t), u(0 : t− 1))}.

While consistency sets are useful to characterize the behavior of the proposed adaptive con-
troller in the closed-loop, they are generally non-convex and hard to manipulate. However, we can
relate them to a convex set using reachable behavior sets.

First, we overload the reachable behavior set notation to define reachable behavior set for mode
estimates Θ̃ ⊆ Θ:

R(Θ̃, t) = {(x(0 : t), u(0 : t− 1)) | ∀θ ∈ Θ̃ : (x(0 : t), u(0 : t− 1)) ∈ R(θ, t)}

and for sequences of subsets of modes m ∈ (2Θ)t:

R(m) =

{
(x(0 : k), u(0 : k − 1))

∣∣∣∣∣ ∀k ∈ [0, t] :

(x(0 : k), u(0 : k − 1)) ∈ R(mk, k)

}
. (4.5)

This set, denoted as R(m) when t is either clear from context or irrelevant, provides a number
of helpful properties in the analysis and optimization-based control synthesis approach. First and
foremost,R(m) is a polytope for any choice of m.

Lemma 4. R(m) is a polytope for any choice of m ∈ (2Θ)T with some finite length T .

Proof. First, consider the set R(θ, t) for any choice of θ ∈ mt+1 and 0 ≤ t ≤ T − 1. Because X0

and U are polytopes, the first two constraints in (4.2) are polytopic constraints on the state-input
trajectory (x(0 : t), u(0 : t− 1)). The last two lines of (4.2) form a finite number of polytopic con-
straints (containment byWθ) on a linear function of the state-input trajectory. Therefore,R(θ, t) is
defined entirely by an intersection of finitely many polytopes (i.e. it is a polytope). Next, observe
that R(mt+1, t) = ∩θ∈mt+1R(θ, t) and R(m) = ∩t∈[0,T−1]R(mt+1, t), which is a finite intersec-
tion of polytopes by finiteness of T and Σ. Therefore,R(m) is a polytope.

We define a partial order on estimation sequences as follows: m ⊆ m′ if and only if mk+1 ⊆
m′

k+1 for all k ∈ [0, t − 1]. Then, the consistency set corresponding to an estimation sequence
m contains all the state-input trajectories that exactly leads to the estimates in m, whereas the
reachable behavior sets include the state-input trajectories that can lead to the estimates in m but
also those that can lead to m′ for m ⊂m′. The relation of these two sets is illustrated in Figure 4.2
and formalized next.

49

x

u

R(Θ{1})

R(Θ{2})

x

u

C(Θ{1})

C(Θ{2})

C(ΘΘ)

Figure 4.2: An illustration of reachable behavior sets (left) and consistency sets (right) for a system
with Θ = {1, 2}. We omit x(0) dimension as it is a singleton so the sets are shown in X × U
space. Take, for instance, the length-two estimation sequence m = Θ{2}. The set C(Θ{2})
contains all state-input pairs that will lead to the estimate {2} but not to the estimate {1} at time
t = 1, whereas the set R(Θ{2}) contains all state-input pairs that would lead to an estimate
µ(1) such that {2} ⊆ µ(1). Reachable behavior sets are always convex, but can be overlapping
(left). Consistency sets, however, can be non-convex and collectively partition the space of possible
reachable behaviors (right).

Lemma 5. For a given sequence m ∈ (2Θ)t, the consistency set and the reachable behavior set

are related by the following equality:

C(m) = R(m) \

(⋃
m′:m⊂m′

R(m′)

)
(4.6)

Proof. To prove this, first note that, by utilizing (4.3) and (4.5), the reachable behavior set R(m)

is alternatively written as:

R(m) = {(x(0 : t), u(0 : t− 1)) |m ⊆ µ(0 : t)}.

Thus the result follows.

4.4 Internal Controller Structure

In this section, the second part of the adaptive controller in Figure 4.1 is defined. It is the inner
controller and receives as input both the state-input trajectory as well as the estimation sequence
from the mode estimator. We define the inner controller as a partial function:

γ̃ :M× (X × (X × U)∗)→ U , (4.7)

where M denotes a set of estimation sequences that we call an exploration-exploitation profile.
Due to the structure of the estimator, not all estimation sequences are feasible. One main restriction

50

is that the estimator is always “narrowing down” the hypotheses for the true system and will never
“add in” a new guess to its list. Hence, the largest exploration-exploitation profile that does not
contain unnecessary estimation sequences that cannot occur for any system with any controller, is
given as follows:

M∗ ≜ {m ∈ (2Θ)T |m0+1 = Θ ∧ ∀k ∈ [1, T − 1],mk+1 ⊆mk}.

Given an exploration-exploitation profileM ⊆ M∗, the actual domain of γ̃ is a subset of the set
M × (X × (X × U)∗). This is because the arguments of the function are coupled due to the
feedback loop. In particular, the inputs m ∈ M and state-input data (x(0 : t), u(0 : t − 1)) must
satisfy (x(0 : t), u(0 : t− 1)) ∈ C(m).

The first input of the inner controller has only a finite number of values. This fact allows for
the partial function γ̃ to be analyzed as |M| individual partial functions, each of which is defined
with respect to a single m ∈ M and denoted by γ̃|m : X × (X × U)∗ → U . Overall, the inner
controller has two coupled design parameters: the exploration-exploitation profileM and the set
of controllers {γ̃|m}m∈M. With this in mind, we will first discuss closed-loop consistency sets and
a sufficient condition for a controller to provide a solution to Problem 2. Then, we will provide
a parameterization for {γ̃|m}m∈M that allows for searching controllers within an optimization
framework.

Again, we introduce a slight abuse of notation γ̃|m(t) ≜ γ̃|m(x(0 : t), u(0 : t− 1)).

4.4.1 Closed-Loop Trajectories and Robust Reachability

The largest possible exploration-exploitation profileM∗ is used in a controller of the form (4.7).
However, the design of this controller γ(M∗) shapes the state-input trajectories (x(0 : t), u(0 :

t − 1)) that can be observed of the system. We will call this new set of state-input trajectories,
constrained by the controller, the closed-loop consistency set. We then show that for a controller
to be a solution to Problem 2, the closed-loop consistency set it induces should lead to behaviors
that reach the target set XT .

Definition 11. [Closed-Loop Consistency Set] The closed-loop consistency set C(m′, γ̃|m) for the

estimation sequence m′ ∈ (2Θ)T with the controller associated with m ∈ M is the set of all

elements of m′’s consistency set that are reached with the disturbance controller γ̃|m. In math, the

closed-loop consistency set is:

C(m′, γ̃|m) =

{[
x(0 : t)

u(0 : t− 1)

]
∈ C(m′)

∣∣∣∣∣ ∀k ∈ [0, t− 1] :

u(k) = γ̃|m(x(0 : k), u(0 : k − 1))

}
.

51

The closed-loop reachable behavior set can be defined similarly:

R(m′, γ̃|m) ≜

{[
x(0 : t)

u(0 : t− 1)

]
∈ R(m′)

∣∣∣∣∣ ∀k ∈ [0, t− 1] :

u(k) = γ̃|m(x(0 : k), u(0 : k − 1))

}
,

where m,m′ ∈ M∗. It follows that C(m′, γ̃|m) ⊆ R(m′, γ̃|m) since C(m′) ⊆ R(m′) by
Lemma 5.

In the example shown in Figure 4.2, the closed-loop consistency set C(ΘΘ, γ|ΘΘ) is the restric-
tion of the orange set to the manifold defined by u(k) = γ̃|ΘΘ(x(0 : k), u(0 : k − 1)) for all
k ∈ [0, t]. This might be a convex or non-convex set depending on the function γ̃|ΣΣ.

Now, we introduce the reachability condition that the controller must satisfy in order to solve
Problem 2. The condition can be written in terms of a reachability constraint for each sequence
m ∈M∗.

Proposition 6. Consider a system of the form (4.1) and an adaptive controller γ(M∗) defined as

in Figure 4.1 with mode estimator µ given in (4.3) and inner controller γ̃ given in (4.7). If for all

m ∈M∗ it is true that

∀(x(0 : T − 1), u(0 : T − 2)) ∈ R(m, γ̃|m) :

∀θ ∈mT , ∀wT−1 ∈ Wθ :

(Aθx(T − 1) +Bθγ̃|m(T − 1) + w(T − 1)) ∈ XT ,

(4.8)

then all closed-loop trajectories of the system’s state reach the target set at time T (i.e. x(T) ∈ XT

with γ(M∗)).

Proof. Consider an arbitrary closed-loop state-input trajectory (x(0 : T), u(0 : T − 1)) for the
fixed controller γ(M∗) and the corresponding estimation sequence m∗ = µ(0 : T − 1) ∈ M∗. By
definition of consistency sets, we have (x(0 : T − 1), u(0 : T − 2)) ∈ C(m∗) and, by Lemma
5, (x(0 : T − 1), u(0 : T − 2)) ∈ R(m∗). Moreover, since the inner controller γ̃|m∗ is used,
we have (x(0 : T − 1), u(0 : T − 2)) ∈ R(m∗, γ̃|m∗). With this in mind, if the condition (4.8)
holds for all m ∈ M∗, it also holds for m∗. Hence, by the last line of (4.8), the control input
u(T − 1) = γ(M∗)(T − 1) guarantees that the final state reaches the target (i.e., x(T) ∈ XT).

Finding arbitrary functions that satisfy Proposition 6 is a fairly difficult task. To simplify the
search process, we constrain the class of the controllers considered to those with a certain affine
parameterization.

52

4.4.2 Disturbance Feedback Parameterization

In this section, we restrict the class of controllers so that Proposition 6 can be verified via optimiza-
tion. In particular, for each m, we restrict the controller γ̃|m to be an affine disturbance feedback
controller with memory.

A disturbance feedback controller takes the form

γ̃|m(x(0 : t), u(0 : t− 1)) = K(m[1:t+1])ŵ(0 : t− 1) + k(m[1:t+1]), (4.9)

where the disturbance at all times before the current time step are recovered using the state-input
trajectory via

ŵ(k) = x(k + 1)− Aθ′(k)x(k)−Bθ′(k)u(k) ∀k ∈ [0, t− 1], (4.10)

where θ′(t) is a specific mode in mt+1 chosen as is done in [166]. One can observe that, γ̃|m is a
linear function of the state-input trajectory as it is a composition of a linear function with a linear
function. Moreover, parameterizing the controller with gains K(m[1:t+1]), k(m[1:t+1]) that multiply
the disturbances results in control parameters entering the problem in a linear way [60].

The inner controller γ̃|m can then be defined entirely by a pair of matrices
(K(m[1:t+1]), k(m[1:t+1])) at each time t (i.e., T pairs of matrices in total for a horizon of T). To
simplify the controller analysis, the inner controller will instead be represented with the following
block matrices for each m:

k(m) ≜
[
(k(m1:1))⊤ (k(m1:2))⊤ · · · (k(m1:T))⊤

]⊤
,

K(m) ∈ RnuT×nwT ,

where for τ > 0, the (τ + 1)th block row (i.e., the rows τnu + 1 to rows (τ + 1)nu) are given by

(K(m))τnu+1:(τ+1)nu ≜
[
K(m1:τ+1) 0nu×(T−τ)nw

]
.

Note that the first block row is all zeros in K(m). There is no component K(m1:1) because no
estimate can be constructed with just x(0). Without the estimate at time 0, there is no need for the
proportional gain in (4.9).

For this specific choice of controller, many of the constraints and sets discussed thus far re-
main polytopic. For instance closed-loop consistency and closed-loop reachable behavior sets can
be expressed as in Definition 10 and Equation 4.5 with additional linear constraints. A linearly
constrained polytope is still a polytope, which allows us to make the following claim about the
closed-loop reachable behavior set:

53

Lemma 6. For any pair of estimation sequences m′ ∈ (2Θ)T and m ∈ M created according to

(4.3), the closed-loop reachable behavior setR(m′, γ̃|m) is a polytope.

Proof. First, note that R(m) is a polytope as shown in Lemma 4. Next, because we have made
the assumption that the controller component uses disturbance feedback of the form (4.9), the
constraint u(k) = γ̃|m(k) is equal to

u(k) = K(m0:k)ŵ + k(m0:k) for all k.

Therefore, the closed loop reachable behavior set adds an affine constraint between u(k) and ŵ(0 :

k− 1) (which is itself a linear function of the state-input trajectory (x(0 : k), u(0 : k− 1))). Thus,
it is still a polytope.

Given that the closed loop reachable behavior set is also a polytope, we can now write down the
previous conditions on reachable behavior sets in terms of the new closed-loop reachable behavior
set. Specifically, the reachability constraints take a nice linear form when disturbance feedback
controllers are used. In particular, we have the following counterpart to Eq. (4.8). If for every
m ∈M the controller γ̃ defined in (4.9) satisfies

∀(x(0 : T − 1), u(0 : T − 2)) ∈ R(m, γ̃|m) :

∀θ ∈mT , ∀w(T − 1) ∈ Wθ :

(Aθx(T − 1) +Bθ(K
(m)ŵ(0 : T − 2) + k(m)) + w(T − 1) ∈ XT

(4.11)

where ŵ(k) is the estimate of the disturbance created using (4.10), then the system will reach the
target set.

4.5 Optimization-Based Solution

In this section, we present an optimization problem that searches for a solution to Problem 2 in
the form of a controller with the structure of Figure 4.1. The optimization problem is shown to
be bilinear, hence it can be solved using off-the-shelf tools for exploration-exploitation profile
M∗. We first analyze this optimization problem and then point out design methods for generating
alternative exploration-exploitation profilesM.

Proposition 2 is encoded into a bilinear constraint for an adaptive controller in the following
proposition:

Proposition 7. Consider a linear system with the collection of modes Θ, a time horizon T and a

54

target set XT . If there exists a solution to the following feasibility problem

Find
{
K(m),k(m)

}
m∈M∗

s.t. ∀m ∈M∗ :

γ̃|m defined as in (4.9) (4.12a)

(4.11) holds (4.12b)

∀(x(0 : T − 1), u(0 : T − 2)) ∈ R(m, γ̃|m),∀t ∈ [0, T − 1] : (4.12c)

γ̃|m(t) ∈ U (4.12d)

∀m,m′ ∈M∗ :

m[1:t] = m′
[1:t] =⇒

K(m[1:t]) = K(m′
[1:t]

), k(m[1:t]) = k(m′
[1:t]

), (4.12e)

then the estimator (4.3) and the disturbance feedback gains which solve the problem define an

adaptive controller that solves Problem 2. Moreover, this problem can be rewritten as a bilinear

program.

Proof. First, note that the set of gains
{
K(m),k(m)

}
m∈M∗ which satisfies (4.11) alone may not

define a controller function γ(M∗) that is causal in the estimated mode sequence. This is because
the set of gains may define a non-causal controller or a controller that does not satisfy the input
constraints of the problem. (4.12e) guarantees causality of the controller by enforcing the same
gains to be used whenever the mode estimation prefixes are the same, similar to our earlier work
[127].

In addition to the causality constraints, we also constrain our controller to produce control inputs
within the set U . The constraints (4.12d) and (4.12c) guarantee that the input obeys this constraint
for any possible state-input trajectory at any possible time in the time horizon T .

Furthermore, because the constraint (4.11) is satisfied, the causal controller defined by{
K(m),k(m)

}
m∈M∗ also solves Problem 2.

To show that (4.12) is a bilinear problem, we will analyze each constraint.
First, note that the constraints (4.12e) are linear equality constraints on the gain variables.
Second, the constraint (4.11) can be written as the following set containment:

∀θ ∈mT−1 :

RT−1R(m, γ̃|m)⊕Bθ(K
(m)Ŵθ(m)⊕ {k(m)})⊕Wθ ⊆ XT

where RT−1 is the matrix that extracts the state x(T − 1) from any state-input trajectory

55

[
x(0 : T − 1)

u(0 : T − 2)

]
, and the estimated disturbance set is defined as

Ŵ(m) =
{
HŴ(m)(m, K(m), k(m))w ≤ hŴi(m)(m, K(m), k(m))

}
i.e. a polytope whose hyperplane matrices are a linear function of the decision variables. This
containment constraint, upon application of Lemma 1, results in bilinear constraints between the
containment dual variable Λ and the decision variables. Similarly, (4.12c) and (4.12d) results
in bilinear terms because they are similar polytope containment conditions. Thus, the feasibility
problem contains linear and bilinear optimization constraints.

A few remarks are in order to put Proposition 7 into context.
First, a robust controller (i.e. a controller which ignores mode information) can be obtained

by imposing the additional constraint that (K(m),k(m))’s are the same for all m ∈ M∗. Such a
controller does not need a mode-estimator to be implemented. By definition, the adaptive controller
developed in this chapter is feasible whenever a robust controller for Problem 2 exists.

Next, the computational complexity of the problem (4.12) depends on the cardinality |M∗|
of the exploration-exploitation profile M∗. As the number of elements in M∗ increases or de-
creases, so do the number of bilinear constraints (from (4.12c), (4.12d), and (4.11)); the number
of controller parameters in the problem scales with O(|M∗|). The quantity |M∗| itself can scale
prohibitively, especially with large time horizons, |M∗| = O(2|Σ|T). Finally, we note that since
we avoid state-space discretization, the scalability with respect to the continuous state-space di-
mension is more favorable when using an off-the-shelf industry-grade solver [63] compared to
abstraction-based methods.

In the next section, we discuss alternative exploration-exploitation profiles together with the
implications of using different profiles on the computational complexity.

4.5.1 Other Exploration-Exploitation Profiles

So far we have assumed that the exploration-exploitation profileM∗ is used. This section considers
the adaptive controller design problem when profile M ⊂ M∗ is chosen. The computational
advantage of choosing a differentM is discussed before the requirements of such an exploration-
exploitation profile are evaluated.

While Proposition 7 provides a sufficient condition for the existence of an adaptive controller,
the number of decision variables scales poorly with the time horizon T and the number of modes
|Θ|. For this reason, it would be helpful to choose the exploration-exploitation profileM ⊂ M∗

instead. For some systems (e.g. Example 1), reachability analysis of the first few steps in the time

56

horizon can reveal that some elements m ∈ M∗ are not possible (i.e., the estimator will identify
the mode at time t = 1, so there is no need to consider m ∈M∗ where |mk+1| > 1 for any k > 2).
Verifying that an estimator sequence m ∈ M∗ is not possible can be done with the following
lemma:

Lemma 7. An estimation sequence m ∈M∗ can not be produced by any state-input trajectory of

the system (4.1) ifR(m) = ∅.

Proof. This proof follows from the definition ofR(m).

We can use Lemma 7 to obtain a lower cardinality exploration-exploitation profileM by remov-
ing fromM∗ the estimation sequences m such thatR(m) = ∅. This will result in less variables in
the optimization problem (4.12). However, if we want to reduce the cardinality further, this should
be done carefully.

Specifically, a solution to Problem 2 with a smaller profile M ⊂ M∗ must satisfy both
a reachability condition and a condition on the set of all state-input trajectories produced by
controller. The reachability condition has been discussed previously (i.e., Proposition 6). The
condition on all state-input trajectories is stated as: For every closed-loop state-input trajectory
(x(0 : T − 1), u(0 : T − 2)), µ(x(0 : T − 1), u(0 : T − 2)) ∈ M. This condition is guaranteed
when considering the profileM∗ because, by definition ofM∗, µ(T−1) ∈M∗ for any state-input
trajectory of a system. Such a guarantee is not provided forM⊂M∗.

To guarantee that the inner controller is defined for every estimation sequence m1:t+1 (and its
associated state-input sequence), a condition is added which enforces that all m generated by the
system’s closed loop state-input trajectories belong to the profileM. To achieve this, we introduce
the following proposition:

Proposition 8. Consider the system (4.1) with modes Θ. LetM⊆ (2Θ)T and {γ̃|m}m∈M be such

that ∀mc ∈M∗ \M,m ∈M,

mc ⊆m =⇒ R(mc, γ̃|m) ⊆ R(m, γ̃|m) (4.13a)

mc ⊈ m =⇒ R(mc, γ̃|m) = ∅ (4.13b)

then the setM contains mode estimation sequences for all possible closed-loop state-input trajec-

tories, i.e.

R∗ =
⋃

m∈M

R(m, γ̃|m) (4.14)

57

where

R∗ .
=

(x(0 : T − 1), u(0 : T − 2))

∣∣∣∣∣∣∣∣∣∣
x(0) ∈ X0, u(0 : t− 1) ∈ U t

∃θ ∈ Θ : ∀k ∈ [0, T − 2] :

x(k + 1)− Aθx(k) +Bθu(k) ∈ Wθ

uk = γ(M)(x(0 : k), u(0 : k − 1))

 .

Proof. By definition, R∗ ⊇ R(m, γ̃|m) for any m ∈ (2Θ)T . R∗ ⊇
⋃

m∈MR(m, γ̃|m) quickly
follows from that.

Now, consider the arbitrary state-input trajectory (x(0 : t), u(0 : t − 1)) ∈ R∗. If there exists
a sequence m ∈ M such that (x(0 : t), u(0 : t − 1)) ∈ R(m, γ̃|m), then we can show that
R∗ ⊆

⋃
m∈MR(m, γ̃|m), completing the proof.

First, note that for (x(0 : t), u(0 : t − 1)) there must exist a value m∗ ∈ (2Θ)T such that
(x(0 : t), u(0 : t− 1)) ∈ R(m∗). By definition, m∗ will belong toM∗.

Suppose that m∗ /∈ M. It is not possible for m∗ ⊈ m for all m ∈ M. By (4.13b), if m∗ ⊈ m

for all m ∈M, thenR(m∗) = ∅ and thus no data will cause m∗.
It is also not possible for m∗ ∈ Mc with at least one m ∈ M such that m∗ ⊆ m. By (4.13a),

any state-input trajectory that satisfies (x(0 : t), u(0 : t − 1)) ∈ R(mc, γ̃|m) will simultaneously
satisfy (x(0 : t), u(0 : t − 1)) ∈ R(m, γ̃|m). Thus, the estimator will select m instead of m∗ as
its estimate (because m∗ ⊆ m) and m∗ is not possible. Thus, by contradiction, m∗ ∈ M for an
arbitrary element (x(0 : t), u(0 : t− 1)) ∈ R∗ andR∗ ⊆

⋃
m∈MR(m, γ̃|m).

For anyM ⊂ M∗, satisfaction of Propositions 6 and 8 guarantees that Problem 1 is correctly
solved. This requires reasoning about the emptiness of polytopic sets (see constraint (4.13b)),
which can be done with a bilinear constraint using Lemma 2.

Proposition 9. Consider a linear system of the form (4.1), a time horizon T , an exploration-

exploitation profile M ⊂ M∗ and a target set XT . If there exists a solution to the following

feasibility problem

Find
{
K(m),k(m)

}
m∈M

s.t. (4.12) (4.15a)

∀mc ∈M∗ \M,m ∈M :

mc ⊆m =⇒ R(mc, γ̃|m) ⊆ R(m, γ̃|m) (4.15b)

mc ⊈ m =⇒ R(mc, γ̃|m) = ∅ (4.15c)

then the estimator (4.3) and the disturbance feedback gains which solve the problem define an

adaptive controller that solves Problem 2. Moreover, this problem can be rewritten as a bilinear

58

program.

Proof. A solution to (4.15) necessarily satisfies (4.12) and thus guarantees that all state-input
trajectories from the set ∪m∈MR(m) are steered to reach the target set XT . By Proposition 8,
∪m∈MR(m) = R∗ and thus all reachable behaviors of the system reach the target set XT . There-
fore, a solution to (4.15) defines a causal controller that solves Problem 2.

The problem is bilinear due to the constraints discussed in (4.12) as well as the novel constraints
(4.15b) and (4.15c). Specifically, (4.15b) defines a set containment constraint for polytopes of the
form:

R(mc, γ̃|m) ={
HR(mc,γ̃|m)(m

c,K(m),k(m))

[
x(0 : T − 1)

u(0 : T − 2)

]
≤ hR(mc,γ̃|m)(m

c,K(m),k(m))

}

where HR(mc,γ̃|m)(m
c,K(m),k(m)) and hR(mc,γ̃|m)(m

c,K(m),k(m)) are linear functions of the
matrices K(m) and k(m). To include this containment constraint into the optimization, Lemma 1 is
used and will introduce constraints where Λ will multiply
HR(mc,γ̃|m)(m

c,K(m),k(m)). This product is a bilinear expression. Furthermore, (4.15b) is in-
cluded into the optimization problem via the application of Lemma 2. This constraint takes the
form similarly introduces a new variable λ which is multiplied by one of the matrices HR(mc,γ̃|m)

(mc,K(m),k(m)).
Thus, the feasibility problem contains only linear and bilinear optimization constraints.

Also note that the choice ofM affects what information can be revealed about the system. For
instance, takingM = {2Σ}T , the onlyM with cardinality 1, we will be searching for controllers
that guarantee reachability while making it impossible to identify the mode for any outside ob-
server. By selectingM, one can control at what time and to what level of accuracy the potential
true system modes are discovered. This, in return, can be used to encourage controllers that explore
or exploit more.

4.6 Results

In this section, Proposition 7 is used to synthesize controllers for four different case studies.1 The
first case study contains a problem where the exploration-exploitation profile M∗ and another
profileM satisfying |M| = 2 are used to design an adaptive controller for the same system. For
the first example, any controller that is applied will immediately gain information about the true

1An implementation of the optimization (4.12) and the code for reproducing the results can be found in https:
//tinyurl.com/ywfk8m7m.

59

https://tinyurl.com/ywfk8m7m
https://tinyurl.com/ywfk8m7m

mode of the system and can exploit it. The second case study is composed of a system with modes
where the state of the system rotates counterclockwise about an unknown axis of rotation in the
plane. The mode of the system (i.e., the axis of rotation) is very difficult to identify and thus it must
be solved with a large exploration-exploitation profile. The third case study is a simplified version
of a drone system that may or may not be carrying a payload. In this instance, the controller adapts
to the payload so that the target set is reached. The final case study considers two similar triple
integrator system with an uncontrollable subspace in their dynamics. By varying the dimension of
this uncontrollable subspace, this case study displays how the time required to solve the controller
synthesis problem varies with the dimension of the state dimension.

In all of the case studies, Gurobi [63] is used to solve the bilinear optimization problem (4.12).
We use YALMIP [90] to formulate the constraints of the optimization problem which are later
given to Gurobi and report both the constraint formulation time as well as the time it takes for
Gurobi to find a solution.

4.6.1 Case Study 1: All Controllers Discriminate

Our first example consists of a system where modes are opposing rotations. Specifically, con-
sider the following two mode system (i.e. |Θ| = 2), where (A1, B1,W1) = (Rπ/4, I2,W) and
(A2.B2,W2) = (R−π/4, I2,W)}. Note that the two systems are nearly identical except for the
state update matrix A which is either a clockwise rotation by π

4
radians (Rπ/4) or a counterclock-

wise rotation by −π
4

radians (R−π/4).
The disturbance polytopeW is a scaled hypercubeW = {w ∈ R2 | ∥w∥ ≤ ηw}, ηw = 0.25,

the initial state x0 =
[
−1 0

]⊤
, the target set is and the time horizon XT = {x ∈ R2 | ∥x− xc∥ ≤

(4 +
√
2)ηw} centered on the point xc =

[
2 + 0.5

√
2 0

]⊤
.

For this system, the two modes are immediately distinguishable as alluded to by Figure 4.3 (left)
which shows how the reachable sets immediately separate when zero input is applied. A controller
that does not use this information (i.e., is mode agnostic) cannot solve the problem. The adaptive
controller produced by Proposition 7 does solve the problem as shown in Figure 4.3 (right).

When using M∗, (4.12)’s constraints are constructed in 7.59 seconds via YALMIP and the
bilinear optimizer solves the problem in 0.05 seconds.

The immediate separation of the reachable sets suggests that many of the consistency sets for
m ∈M∗ satisfy C(m) = ∅. In fact, the algorithm correctly determines that the only two estimation
sequences that have nonempty consistency sets (out of 7) are:

m(1) = Θ{1}{1}{1}, and m(2) = Θ{2}{2}{2}.

60

Figure 4.3: Left: Reachable sets for the two modes in the Opposing Rotations system. Note that,
with zero input, each system cannot guarantee that the target set will be reached, but with a very
simple closed loop controller, both systems can be identified at time 1 and then steered into the
target set. Right: The closed-loop reachable sets where the adaptive controller guarantees that the
target state (yellow) is reached regardless of if system 1 (top figure) or system 2 (bottom figure) is
the true mode of the system.

The two estimation sequences are used to createM = {m(1),m(2)}, onlyM = {m(1),m(2)}.
This is exactly as we expected from our intuition about the problem. For this value of M, the
constraints of (4.12) are formed by YALMIP in 11.07 seconds and Gurobi solves the problem 0.04
seconds.

4.6.2 Case Study 2: Mode Discrimination is Not Possible

Now we consider a system where the state update matrices of each mode rotates the state about
an unknown pivot point in R2. In particular, consider the following two mode system (i.e. |Θ| =
2), where (A1, B1,W1) = (Rπ/12, I2,W1) and (A2, B2,W2) = (Rπ/12, I2,W2)}. Here the state
update matrix A is identical along with the input matrix B. A is a rotation matrix for π

12
radians

and I2, the input matrix, is the two-dimensional identity matrix. The two systems only differ in
their disturbance matrices. Here:

W1 = −Rπ/12

[
0

11

]
+

[
0

11

]
+ B2(0.5) , W2 = −Rπ/12

[
0

12

]
+

[
0

12

]
+ B2(0.5)

where Bn(η) = {w ∈ Rn | ∥w∥∞ ≤ η} is the n-dimensional hypercube centered at the origin with
sidelength 2η.

In this example, the state of the system is rotating about a point (either [0 11]⊤ or [0 12]⊤) as
the controller seeks to reach a target set XT = B2(2) + [9.5 5]⊤ at the end of the time horizon

61

Figure 4.4: Ten different runs of the system in Example 4.6.2 with the controller synthesized.
Runs of mode 1 (cyan) and mode 2 (magenta) both reach the target though they may or may not
be identified.

T = 4.
For this system, it is not possible to guarantee that the mode is discriminated at any time in the

time horizon.
Optimization problem (4.12)’s constraints are constructed in 25.93 seconds via YALMIP and

the bilinear optimizer solves the problem in 0.26 seconds.

4.6.3 Case Study 3: Simplified-Drone System

In this example, a delivery drone performing altitude control is considered. The drone’s attempt
to reach a target altitude is complicated by the fact that it may or may not be carrying a package.
This package has a known mass and the delivery drone would like to use a controller to identify
the mass while making progress in the delivery at the same time.

A simplified model of the drone’s motion can be described with the following system with two
modes (i.e. |Θ| = 2):

x(k + 1) = Aθx(k) +Bθ(u(k) + w(k)) + fθ

where

Aθ =

[
1 ∆t

0 1

]
, Bθ =

[
0
∆t
mθ

]
, fθ =

[
0

−g∆t

]
∀θ ∈ {1, 2},

W = [−0.5, 0.5], U = [−40, 40]

and XT = [2, 4]× [−10, 10].

The parameters used are given in Table 4.1.

62

Symbol m1 m2 ∆t g T
Value 1 kg 1.5 kg 0.1 s 10 m/s2 8

Table 4.1: Constants used in the drone system’s definition.

Figure 4.5: Several runs of the drone altitude controller with mass randomly selected for each run.

Proposition 7 is used to find a controller that identifies the mass while making progress towards
the target (i.e., solves Problem 2). Optimization problem (4.12)’s constraints are constructed in
31.67 seconds via YALMIP and the bilinear optimizer solves the problem in 0.18 seconds.

4.6.4 Case Study 4: Scalability Analysis

In this example, the impact of system dimension on the control synthesis method is studied through
a modified version of the system from [172]. The new system is composed of three loosely coupled
double integrators and a tuneable number nuc of uncontrollable dimensions. Thus, the dimension
of the system is 6 + nuc.

Consider the following two mode system (i.e. |Θ| = 2), where (A
(d)
1 , B(d),W) and

(A
(d)
2 , B(d),W). The modes of the system are governed by the matrices:

A(c) =

[
Ã Aur

0 Auc

]
, B(c) =

[
B̃

0

]

Ã =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


, B̃ =



0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1


,

63

nuc Setup Time - YALMIP (s) Solve Time - Gurobi (s)
0 65.79 0.55
2 81.87 0.82
4 87.24 1.28
6 111.80 1.74
8 129.26 2.64

Table 4.2: Controller synthesis times for systems of increasing dimension.

Aur =
[
A1

ur A2
ur A3

ur A1
ur A2

ur A3
ur · · ·

]

A1
ur =



1 0

0 0

0 −1
0 0

0 0

0 0


, A2

ur =



0 1

0 0

0 0

0 0

1 0

0 0


, A3

ur =



0 0

0 0

−1 0

0 0

0 1

0 0


Auc = blockdiag(

[
−10−2 1

1 −10−2

]
,

[
−10−4 2

2 −10−4

]
, · · · ,

[
−10−nuc nuc

2
nuc

2
−10−nuc

]
)

With the discretization step of ∆t = 0.5, A(d)
1 is the time-discretized form of A(c), B(d)

1 is the time-
discretized form of B(c), and A2 is the time-discretized version of Ã′ which contains the same
entries as Ã except (Ã′)4,2 which is defined as 0.2.

In this case study, an adaptive controller is sought for the system starting from x0

=
[
−60 0 −60 0 −70 01×1+nuc

]⊤
with the disturbance set W = [−1, 1]6+nuc , time hori-

zon T = 5 and target set:

XT = [−80,−40]× [−10, 10]× [−80,−40]× [−10, 10]× [−60,−20]× [−10, 10]× [−103, 103]nuc .

An analysis of the time required to find a solution to (4.12) for various values of nuc is presented
in Table 4.2.

64

CHAPTER 5

Controller Synthesis for KLTL Tasks

5.1 Introduction

As mentioned in Chapter 1 and discussed in detail in Chapter 4, designing decision-making systems
that adapt to parametric uncertainty is necessary for formal methods to be applied in many real-
world tasks. The method presented in Chapter 4 designed controllers using the set of potential
models and the exploration-exploitation profile as inputs. The exploration-exploitation profile can
be complicated to specify for a designer. The complexity of specifying exploration-exploitation
profiles for a task is much higher than that of specifying temporal logics like LTL and STL, for a
task. So, in this chapter, we present a method for performing the design task discussed in Chapter
4 but with a specification written in terms of a temporal logic (KLTL).

5.2 Problem Statement

We are interested in simplifying the results from Chapter 4 to make the synthesis problem be writ-
ten in terms of simpler components. In that chapter, we presented a method for designing a con-
troller that correctly satisfies tasks while trading off internally between exploration and exploita-
tion. The trading off of exploration and exploitation was guided by an exploration-exploitation
profileM in that work, but this parameter is novel and unfamiliar to others.

A better method for specifying exploration-exploitation trade-offs can be found through tem-
poral logics like KLTL [31]. The temporal logic KLTL adopts many operators from LTL [14], but
with an important component necessary for output feedback.

Definition 12 (KLTL Grammar). The grammar of KLTL is as follows:

φ ::= p | ¬φ | φ ∧ φ | ⃝ φ | φUφ | Kφ (5.1)

65

in which p ∈ AP is an atomic proposition, while⃝ and U are the “next” and “until” operators.

Formulas of the type Kφ are read as “the system knows that the formula φ holds”.

As is traditionally done in LTL [14] and STL [96], the operators (or “macros”) ♢ (eventually)
and □ (always) can be defined from the above grammar.

The semantics of this temporal logic will be defined over the uncertain linear system (2.5)
discussed in Chapter 4. Recall its form below:

x(t+ 1) = Aθx(t) +Bθu(t) + w(t), w(t) ∈ Wθ (5.2)

For more details about this system, please see Chapter 2 or 4. To develop semantics for this system,
we introduce the concept of the labelling function and the set of trajectory-mode pairs.

Definition 13 (Labelling Function). A labelling function for a set of atomic propositions AP for

the system (5.2) is a function that describes which atomic propositions are satisfied at a given state

and with a given parameter, (i.e. L : X ×Θ→ 2AP).

Let the set of all feasible trajectory-mode pairs (x, θ) that (5.2) can produce for a given con-
troller γ(M∗) over time horizon T (i.e. x = x(0 : T)) be:

T (Θ, γ(M∗)) ≜

(x, θ)

∣∣∣∣∣∣∣∣∣∣
θ ∈ Θ

x(0) ∈ X0

x(k + 1)− Aθx(k)−Bθu(k) ∈ Wθ ∀k ∈ [0, T − 1]

u(k) = γ(M∗)(x(0 : k), u(0 : k − 1)) ∀k ∈ [0, T − 1]


With this labelling function and the set T (Θ, γ(M∗)) in mind, we now define the KLTL seman-

tics for systems with unknown parameters.

Definition 14 (KLTL Semantics for Systems With Unkown Parameters). For any pair of a state

trajectory x and unknown parameter θ, interpret the KLTL operators as follows:

• (x, θ, i) |= p if p ∈ L(x(i), θ)

• (x, θ, i) |= ¬p if (x, θ, i) ̸|= p

• (x, θ, i) |= φ1 ∧ φ2 if (x, θ, i) |= φ1 and (x, θ, i) |= φ2

• (x, θ, i) |=⃝φ if (x, θ, i+ 1) |= φ

• (x, θ, i) |= φ1Uφ2 if ∃j ≥ 0 such that (x, θ, j) |= φ2 and ∀0 ≤ k < j, (x, θ, k) |= φ1,

• (x, θ, i) |= Kφ if for all (x′, θ′) ∈ T (Θ, γ(M∗)) s.t. (x, θ) ∼i (x
′, θ′), we have (x′, θ′, i) |= φ.

66

In our case, we define the similarity relationship ∼i as (x, θ) ∼i (x
′, θ′) if and only if x(0 : i) =

x′(0 : i).

Remark 7. Normally, temporal logic semantics are independent of controllers like γ(M). We note

that this is also the case for KLTL semantics, but to simplify this exposition we have included the

set of all closed loop trajectories into the semantic definition of K. The set T (Θ, γ(M∗)) can be

replaced by any set of trajectory-mode pairs T that the system (2.5) is restricted to (either with or

without control).

Remark 8. KLTL appears to be so similar to LTL that some might wonder whether or not it is truly

a distinct language (i.e., a curious reader might ask whether or not the K operator is a macro).

KLTL is distinct from LTL as is described in Appendix C. The distinction can be stated in fewer

words by saying that KLTL can be used to define hyperproperties while LTL can not.

Remark 9. KLTL is defined independently of the estimator used in an adaptive controller. This

degree of freedom also makes the synthesis problem different from other LTL-based approaches.

Now that we have introduced KLTL, we can formally state the problem that we would like to
solve in this chapter.

Problem 3. Consider an uncertain linear system (2.5) and a KLTL formula φ. Identify a con-

troller γ such that the closed loop system satsifies the formula (i.e. (x, θ, 0) |= φ for all

(x, θ) ∈ T (Θ, γ(M))) according to the semantics from Definition 14.

5.3 Approach

Our approach solves the problem by manipulating the set of all trajectory-mode pairs T (Θ, γ(M∗)).
This set can be decomposed into a union of polytopes, as shown in the following section. Each
element in this union is a set of trajectories that satisfy a particular KLTL formula. By identifying
the KLTL formulas that are implied by the overall task φ in Problem 3, we create a framework that
can be used to find controllers γ that properly manipulate T (Θ, γ(M∗)) and thus solve Problem 3.

In this section, we will repeatedly use the above approach to discuss how to find controllers
that solve Problem 3 for several classes of KLTL formulas (i.e., specific KLTL formula templates).
After the approach is understood for these KLTL formula templates, then it should be possible to
formulate a solution to Problem 3 for any KLTL formula.

Before presenting our analysis of different templates, we first introduce the following assump-
tions:

Assumption 1. Throughout this chapter assume that each atomic proposition p is associated with

a polytopic set Sp ⊆ X or a discrete set Θ̃p ⊆ Θ such that either:

67

• x ∈ Sp ⇐⇒ p ∈ L(x, θ), or

• θ ∈ Θ̃p ⇐⇒ p ∈ L(x, θ).

A proposition that has an associated polytopic set representation in the state space will be called
a state-based proposition and a proposition that has an associated discrete set Θp will be called a
model-based proposition.

For the sake of illustrating our sketch of a solution to Problem 3, we discuss what constraints
need to be satisfied in order for the system (5.2) with controller γ to satisfy simple formulas. We
discuss what constraints are needed in order to satisfy:

• (x, θ, 0) |= p

• (x, θ, 0) |=⃝kφ

• (x, θ, 0) |= φ1Uφ2

• (x, θ, 0) |= Kφ

The other formula components (¬φ, φ1∧φ2) can all be interpreted in a straightforward manner
from our definitions of the above operators.

We are interested in making guarantees about T (Θ, γ(M∗)) for system (5.2) with controller
γ(M∗). To analyze T (Θ, γ(M∗)), we represent it with a combination of convex sets.

Lemma 8. The set of all feasible, closed-loop trajectory-mode pairs (x(0 : T), θ) that a system

(2.5) can produce for a given controller γ(M∗) over time horizon T is equivalent to the following

union of polytopes:

T (Θ, γ(M∗)) =
⋃

m∈M∗∗

⋃
θ∈mT+1

R0:TR(m, γ̃|m)× {θ} (5.3)

where R[0:T] is a matrix that selects the state from time 0 to the end of the trajectory (x(k : T − 1))

of the vector
[
x(0 : T − 1)⊤ u(0 : T − 2)⊤

]⊤
and we introduce the one-step extension M∗∗ of

the profileM∗ with controller γ(M∗) as:

M∗∗ ≜

m ∈ (2Θ)T+1

∣∣∣∣∣∣∣∣∣∣
∃θ ∈ Θ, (x(0 : T), u(0 : T − 1)) :

x(k + 1)− Aθx(k)−Bθu(k) ∈ Wθ ∀k ∈ [0, T − 1]

u(k) ∈ U ∀k ∈ [0, T − 1]

mk+1 = µ(x(0 : k), u(0 : k − 1)) ∀k ∈ [0, T − 1]

 .

Proof. This proof holds given (4.14) and the fact that x(0 : T) can be exactly defined as belonging
to a polytopic projection ofR(m, γ̃|m).

68

Remark 10. We have assumed that the controller γ(M∗) is written with respect toM∗ to guarantee

that the set is well-defined. The profile M∗ may be replaced with any exploration-exploitation

profileM⊆M∗ that will also guarantee T (Θ, γ(M)) is well-defined (i.e., anyM such that (4.13)
are satisfied).

5.3.1 Satisfying Atomic Propositions

The following two propositions describe how to verify whether or not a formula composed of a
single atomic proposition can be evaluated when given Assumption 1.

Proposition 10. Consider an uncertain linear system (5.2) and a state-based atomic proposition

p. The system under controller γ satisfies the proposition φ = p if for all m ∈M∗∗:

R0R(m, γ̃|m) ⊆ Sp (5.4)

where R0 is a matrix that selects the state at time 0 (x(0)) of the vector[
x(0 : T)⊤ u(0 : T − 1)⊤

]⊤
.

Proof. Each trajectory-mode pair (x(0 : T), θ) ∈ T (Θ, γ(M∗)) satisfies the formula φ if the first
state of the trajectory is in the set Sp.

The proof of this proposition holds because of the union in (5.3). If each of the reachable sets
R̃(m, γ̃|m, θ) satisfies (5.4), then the full set T (Θ, γ(M∗)) satisfies the set containment as well.
Thus, all trajectories of the system satisfy the single state-based formula.

The constraint (5.4) is a polytope containment constraint. Thus, we know it can be transformed
into a set of bilinear constraints using Lemma 1. So, for state-based atomic proposition p, finding
a controller that satisfies the bilinear constraint (5.4) guarantees that the proposition p is satisfied.

Proposition 11. Consider an uncertain linear system (5.2) and a model-based atomic proposition

p. The system under controller γ satisfies the proposition φ = p if and only if Θp = Θ.

Proof. The formula is only satisfied if θ ∈ Θp for all (x, θ) ∈ T (Θ, γ(M∗)). By definition, every
mode θ ∈ Θ is represented in T (Θ, γ(M∗)), so the formula is only satisfied if Θp also contains all
modes (i.e. Θp = Θ).

Thus, only one specific model-based atomic proposition can be satisfied in this way. This makes
sense as the model is not influenced by the controller and can take any value in Θ.

69

5.3.2 Satisfying Formulas with Repeated Next Operators

If Problem 3 is solved for a formula (⃝φ), then all trajectories of system (5.2) satisfy formula
φ at time t = 1. Such trajectories satisfy the formula at the “next” time after t = 0 (where our
semantics normally start). So, when the next operator is repeated more than once:

⃝k =⃝⃝ · · ·⃝
k times

then the formula φ should be satisfied at time step t = k in order to satisfy⃝kφ.
This is equivalent to simply applying a linear transform to the set R∗ and thus can be easily

incorporated into convex optimization-based approaches.

Proposition 12. Consider an uncertain linear system (5.2) and an state-based proposition p. The

system under controller γ(M∗) satisfies the formula⃝kp if for all m ∈M∗∗:

R0 ·R[k:]R(m, γ̃|m) ⊆ Sp (5.5)

where R[k:] is a matrix that selects the state from time k to the end of the trajectory (x(k : T)) of

the vector
[
x(0 : T)⊤ u(0 : T − 1)⊤

]⊤
.

Proof. The proof of this is similar to that of Proposition 10. By proving that every kth element of
the state sequence satisfies proposition p, we prove that the formula is satisfied. If the kth element
of the trajectory satisfies proposition p in each R̃(m, γ̃|m), then by (5.3) all trajectory-mode pairs
in T (Θ, γ(M∗)) satisfy the formula.

Again, (5.5) is a polytope containment constraint. Thus, we know it can be transformed into
a set of bilinear constraints using Lemma 1. So, for state-based atomic proposition p, finding a
controller that satisfies the bilinear constraint (5.5) guarantees that the proposition⃝kp is satisfied.

Proposition 13. Consider an uncertain linear system (5.2) and a model-based proposition p. The

system under controller γ satisfies the proposition⃝kp if and only if Θp = Θ.

Proof. This proof follows from the proof of Proposition 11.

Thus, only one specific model-based atomic proposition for which ⃝k can be satisfied. This
makes sense as the model is not influenced by the controller and can take any value in Θ.

Remark 11. The approach for finding controllers that satisfy φkp can be extended to find con-

trollers that satisfy ♢p as well. This is because the formula ♢p is satisfied if there exists a k such

that⃝kφ is satisfied. Finding a k and a controller such that⃝kφ is satisfied (for finite time hori-

zon problems) can be done by formulating a MILP with the constraints from (5.5) and decision

variable k.

70

5.3.3 Satisfying Formulas with the Until Operator

If Problem 3 is solved for a formula (φ1Uφ2), then all trajectories of system (5.2) satisfy formula
φ1 for all times up until some time k ≥ 0 where φ2 must be satisfied.

When the formulas φ1 and φ2 are both state-based atomic propositions, this is equivalent to a
sequence of many polytope containment constraints which can be easily incorporated into convex
optimization-based approaches.

Proposition 14. Consider an uncertain linear system (5.2) and state-based atomic propositions

p1, p2. The system under controller γ satisfies the formula p1Up2 if there exists a k ≥ 0 such that

for all m ∈M∗∗:

RiR(m, γ̃|m) ⊆ Sp1 ∀i ≤ k (5.6)

and

Rk+1R(m, γ̃|m) ⊆ Sp2 . (5.7)

Proof. The proof of this proposition can be thought of as a combination of the proofs of Proposi-
tions 10 and 12.

Again, (5.6) and (5.7) define a collection of many polytope containment constraints. Thus, we
know they can be transformed into a set of bilinear constraints using Lemma 1. So, for state-
based atomic propositions p1 and p2, finding a controller that satisfies the bilinear constraint (5.5)
guarantees that the formula p1Up2 is satisfied.

5.3.4 Satisfying Formulas with the Knowledge Operator

If Problem 3 is solved for a formula (Kφ), then any similar trajectory-mode pair (x′, θ′) of system
(5.2) (i.e. (x′, θ′) such that (x′, θ′) ∼0 (x, θ)) satisfies φ. This formula is difficult to satisfy because
control inputs do not affect knowledge at time t = 0. Control inputs can impact the satisfaction
of a formula the knowledge operator when other temporal operators are included. An example of
such a formula is discussed at the end of this section and is referred to as the learn, then reach
formula template.

Proposition 15. Consider an uncertain linear system (5.2) and a state-based proposition p. The

system under controller γ satisfies the proposition Kp if and only if the system satisfies p.

Proof Sketch. This is because the state of the system is directly observed and thus the system
“knows” if it satisfies the formula immediately.

Proposition 16. Consider an uncertain linear system (5.2) and a model-based proposition p. The

system under controller γ satisfies the proposition Kp if and only if Θp = Θ.

71

5.3.4.1 Satisfying the Learn, then Reach Formula

The formula that we call the learn, then reach formula is:

φ =⃝j(Kp1 =⇒ ⃝kp2).

This more complicated formula uses the K operator as a precondition in an implies statement.
Thus, this statement only is applied to trajectories that satisfy Kp1 at time j and no other trajecto-
ries. We can extract this set of trajectories using the following Lemma:

Lemma 9. Consider an uncertain linear system (5.2) and model-based proposition p with Θ̃p ⊆ Θ.

For such a system and formula, the following sets are equivalent:

{(x, θ) | (x, θ, 0) |=⃝jKp} =
⋃

m∈M∗∗ s.t. mj+1⊆Θ̃

C(m, γ̃|m)×mT+1 (5.8)

where the consistency set definition is in Definition 10.

Proof. Note that, by definition of ∼k, the set of trajectory-mode pairs (x′, θ′) that satisfy (x, θ) ∼k

(x′, θ′) is C(m, γ|m) ×mk+1 where m1:k+1 = µ(x(0 : k), u(0 : k − 1)). If the initial trajectory-
mode pair (x, θ) is chosen properly, then mj+1 ⊆ Θ̃p and the set of related trajectories is all
guaranteed to satisfy ⃝jKp. Thus, the formula ⃝jKp is satisfied for any trajectory (x, θ) such
that µ(j) ⊆ Θ̃p. Thus, the equality (5.8) holds.

With this result in mind, we can present the following result for finding solutions to Problem 3
with the formula⃝j(Kp1 =⇒ ⃝kp2).

Proposition 17. Consider an uncertain linear system (5.2), a model-based atomic proposition p1

and a state-based atomic proposition p2. The system under controller γ satisfies the proposition

⃝j(Kp1 =⇒ ⃝kp2) if for all m ∈M∗∗ such that mj ⊆ Θ̃p1:

Rk+jR(m, γ̃|m) ⊆ Sp2 . (5.9)

Proof. The precondition of the implies indicates that the formula is satisfied if all trajectory-mode
pairs (x, θ) that satisfy ⃝jKp1 also satisfy ⃝j+kp2. The set of trajectory-mode pairs (x, θ) that
satisfy ⃝jKp1 is given in Lemma 9. Furthermore, using the properties of consistency sets from
Chapter 4, the set satisfies ⋃

m∈M∗∗ s.t. mi⊆Θ̃

C(m, γ̃|m) ⊆
⋃

m∈M∗∗ s.t. mi⊆Θ̃

R(m, γ̃|m).

72

Therefore, if (5.9) is satisfied for all R(m, γ̃|m) where m ∈ M∗∗ then it also holds for all
C(m, γ̃|m). Then, applying the results from Proposition 12, we can verify that all such trajectory-
mode pairs satisfy the final formula⃝j+kp2.

5.4 Satisfying More Complex Formulas

In the last section, we discussed how to verify whether or not a system (5.2) with controller γ(M∗)

satisfied some basic formula templates. Each of these templates typically involved the application
of one operator at a time. In most specifications used in the real world, however more than one
operator needs to be used in order to completely specify the task. We provide examples in this
section of two realistic formula templates that would be of interest to adaptive controller designers
and how to design them using the tools discussed in this section.

Proposition 18. Consider an uncertain linear system (5.2) and a state-based atomic proposition

pT that is satisfied when the system reaches XT . A solution to the optimization (4.12) defines an

adaptive controller γ that guarantees the formula φ =⃝TpT is satisfied for the system (5.2).

Proof. A solution to (4.12) defines an adaptive controller that satisfies Problem 2 for XT . The
finite-time reachability task in Problem 2 is exactly⃝TpT where pT is a state-based atomic propo-
sition with associated polytope XT . Thus, the solution to (4.12) determines a solution to Problem
3 for the finite-time reachability specification⃝TpT .

We can slightly modify the proposition above to define controllers that satisfy more complicated
formulas:

Proposition 19. Consider an uncertain linear system (5.2) with |Θ| = 2 and a target time horizon

T . Assume that the target time horizon T is large enough that modes can be distinguished. Also,

consider the following atomic propositions:

• model-based propositions p
(1)
K and p

(2)
K (with associated sets {θ1} and {θ2}, respectively),

along with

• state-based propositions p(1)T and p
(2)
T (with associated sets X (1)

T and X (2)
T , respectively).

The system is guaranteed to satisfy the formula:

φ =
[
♢(Kp(1)K =⇒ ⃝♢p(1)T)

]
∧
[
♢(Kp(2)K =⇒ ⃝♢p(2)T)

]
if the following optimization problem is feasible

73

Find
{
K(m),k(m)

}
m∈M∗

s.t. ∀m ∈M∗ :

γ̃|m defined as in (4.9) (5.10a)

γ̃|m(t) ∈ U ∀t ∈ [0, T − 1] (5.10b)

∀m ∈ {m ∈M∗∗ | ∃τ ∈ [1, T − 1],mτ = {1}} :

RTR(m, γ̃|m) ⊆ X (1)
T (5.10c)

∀m ∈ {m ∈M∗∗ | ∃τ ∈ [1, T − 1],mτ = {2}} :

RTR(m, γ̃|m) ⊆ X (2)
T (5.10d)

∀m,m′ ∈M∗ :

m[1:t] = m′
[1:t] =⇒ K(m[1:t]) = K(m′

[1:t]
), k(m[1:t]) = k(m′

[1:t]
). (5.10e)

Proof. The proof of this follows from the proof of Proposition 18 and the definition of the KLTL
operators in the previous section.

First, note that the constraints (5.10a), (5.10b), and (5.10e) define an adaptive controller that
incorporates an exploration-exploitation profileM∗. The adaptive controller considersM∗ so the
set of trajectory-mode pairs T (Θ, γ(M∗)) is properly defined.

Let us now analyze the other constraints to identify whether or not φ is satisfied for all
trajectory-mode pairs T (Θ, γ(M∗)). First, note that this formula is composed of two parts which
are identical in structure. For that reason, we will focus on the first part of the formula:

♢(Kp(1)K =⇒ ♢p(1)T).

This part of the formula is satisfied if for any time j at which Kp(1)K is satisfied, then at a later
time j + k at the state-based proposition p

(1)
T is satisfied. This can be written mathematically as

saying that ♢(Kp(1)K =⇒ ♢p(1)T) if for any j and k such that the learn, then reach specification
⃝j(Kp1 =⇒ ⃝kp2) is satisfied.

The “learn then reach” specification is satisfied for j and k = T − j if for all m ∈ M∗∗ such
that mj ⊆ {θ1}:

Rk+jR(m, γ̃|m) ⊆ Sp2

according to Proposition 17. This constraint is satisfied for j < T if (5.10) is satisfied (due to
constraint (5.10d)).

All trajectory-mode pairs in T (Θ, γ(M∗)) satisfy the formula φ. optimization (5.10) guarantees
formula φ Constraint (5.10c)

74

5.5 Results

In this section, the propositions developed in Section 5.4 are applied to two illustrative examples.
In the first example, the system is reduced to a point where the implementation of Proposition 19
can be done by observation. In this example, we show that the system satisfies the constraints of
(5.10) and that it also satisfies the associated formula template. In the second example, a drone
system is presented with a task that is a learn, then reach formula. For this system, the bilinear
optimization problem is solved quickly and an adaptive controller is produced that properly adapts
to a faulty drone dynamics.

5.5.1 Similar Rotation System

The first example in this section will consider will not include control. When this is the case, the
number of trajectories that can be produced is a bit simpler and the analysis can be done without
software.

Consider a similar rotation system similar to that of Section 4.6.1. Similarly, we consider
the following two mode system (i.e. |Θ| = 2), where (A1, B1,W1) = (Rπ/4, 0, {0}) and
(A2, B,W2) = (R−π/4, 0, {0})}. Note that the two systems are nearly identical except for the
state update matrix A which is either a counterclockwise rotation by π

4
radians (Rπ/4) or a coun-

terclockwise rotation by −π
4

radians (R−π/4).

The initial state set of the system is X0 = {
[
−1 0

]⊤
}.

Now consider the following formula:

φ1 =
[
♢(Kp(1)K =⇒ ⃝♢p(1)T)

]
∧
[
♢(Kp(2)K =⇒ ⃝♢p(2)T)

]
where

• p
(1)
K and p

(2)
K are model-based propositions with associated sets Θ̃(1) = {1} and Θ̃(2) = {2},

respectively, and

• p
(1)
T and p

(2)
T are state-based propositions with associated sets X (1) = [−0.5, 0.5] ×

[−1.5,−0.5] and X (2) = [−0.5, 0.5]× [0.5, 1.5].

For this problem, one only needs to evaluate the trajectory-mode pairs (x, θ) where x = x(0 : 2)

in order to determine that φ is satisfied. Note the following reachable behavior sets:

• At t = 0: R({Θ}) = X0 =

{[
−1 0

]⊤}
• At t = 1:

75

– R(Θ{1}) =
{
(
[
−1 0

√
2
2
−

√
2
2

]⊤
, 0)

}
– R(Θ{2}) =

{
(
[
−1 0

√
2
2

√
2
2

]⊤
, 0)

}
– R(ΘΘ) = ∅

• At t = 2:

– R(Θ{1}{1}) =
{
(
[
−1 0

√
2
2
−

√
2
2

0 −1
]⊤

,
[
0 0

]⊤
)

}
– R(Θ{2}{2}) =

{
(
[
−1 0

√
2
2

√
2
2

0 1
]⊤

,
[
0 0

]⊤
)

}
– R(ΘΘ{1}) = ∅

– R(ΘΘ{2}) = ∅

– R(ΘΘΘ) = ∅

Thus, we know that the set of all trajectory-mode pairs of length 2 is defined as

T (Θ, γ(M∗)) =

{
(
[
−1 0

√
2
2
−

√
2
2

0 −1
]⊤

, {1}), (
[
−1 0

√
2
2

√
2
2

0 1
]⊤

, {2})
}

for this system. By observation, the following properties hold for this set of trajectory-mode pairs:

• The first trajectory-mode pair satisfies⃝jKp(1)K for j ≥ 1 (i.e. (x1, θ1, 0) |= ⃝jKp(1)K ∀j ≥
1) . Similarly, the second trajectory-mode pair satisfies ⃝jKp(2)K (i.e. (x2, θ2, 0) |=
⃝jKp(2)K ∀j ≥ 1). This is true because the number of trajectory-mode pairs that satisfy
each⃝jKp(k)K for j ≥ 1 and k ∈ {1, 2} is one for each assignment of j and k.

• The first trajectory-mode pair satisfies ⃝2p
(1)
T (i.e. (x1, θ1, 0) |= ⃝2p

(1)
T) and the second

trajectory-mode pair satisfies⃝2p
(2)
T (i.e. (x2, θ2, 0) |=⃝2p

(2)
T).

The two observations above are enough to conclude that φ is satisfied. Now, to verify that Propo-
sition 19 correctly detects this, we evaluate each of the constraints in (5.10). Because we assume
that there is no input (i.e. u(k) = 0 ∀k), we assume that all input constraints are trivially satisfied
(i.e. (5.10a), (5.10b) and (5.10e) may be ignored).

Consider constraint (5.10c). This constraint needs to hold for all m ∈ {Θ{1}{1}} (there is
only one sequence that contains the mode {1}). Thus, constraint (5.10c) only needs to be satisfied

forR(Θ{1}{1}) =
{
(
[
−1 0

√
2
2
−

√
2
2

0 −1
]⊤

,
[
0 0

]⊤
)

}
. Now,

R2R(Θ{1}{1}) =

{[
0

−1

]}

76

and R2R(Θ{1}{1}) ⊆ X (1)
T .

A similar line of reasoning proves that constraint (5.10d) also holds for this example.

5.5.2 Drone with Corrupted Velocity Commands

The second example in this section will consider will include control. In this example, we consider
a drone which is modeled as a single integrator (i.e. we assume that we control the drone’s velocity)
in the two-dimensional plane.

Consider the system as a two mode instance (i.e. |Θ| = 2) of (5.2), where the state is a two-

dimensional vector x(t) =
[
px(t) py(t)

]⊤
representing the drone’s position in the x- and y-

axes of the plane. Let the system be represented by two tuples (A,B1,W1) = (I, R0,W) and
(A,B2,W2) = (I, Rπ/16,W)}. Note that the two systems are nearly identical except for the input
matrix B which is either a counterclockwise rotation by π

16
radians (Rπ/16) or no rotation (I2). This

indicates that either velocity commands are corrupted (i.e. rotated by π
16

radians) or not. Corruption
of the velocity command can be the result of damage to the drone, software errors, and much more.

The set of disturbancesW = {w ∈ R2 | ∥w∥ ≤ 0.1}, the set of allowable inputs is U = {u ∈
R2 | ∥u∥∞ ≤ 0.5} and the initial state set of the system is X0 = {

[
0 0

]⊤
}.

The task for this system is as follows:

φ1 =
[
♢(Kp(1)K =⇒ ⃝♢p(1)T)

]
∧
[
♢(Kp(2)K =⇒ ⃝♢p(2)T)

]
where

• p
(1)
K and p

(2)
K are model-based propositions with associated sets Θ̃(1) = {1} and Θ̃(2) = {2},

respectively, and

• p
(1)
T and p

(2)
T are state-based propositions with associated sets X (1)

T = [1.2, 1.8] × [1.0, 1.4]

and X (2)
T = [0.5, 1.1]× [1.0, 1.4].

In other words, if the drone learns that its control commands are corrupted then it should reach
region X (2)

T . If the drone learns that its control commands are not corrupted, then it should reach
region X (1)

T .
The optimization presented in Proposition 19 can be solved to find a controller that guarantees

this specification is satisfied. The optimization is solved in 1.38 seconds (with a constraint setup
time of 56.34 seconds). The result of this optimization can be applied to the simulated system
above for various realizations of the unknown parameters as shown in Figure 5.1 or applied on a
real drone system (i.e., the Crazyflie 2.1) as is visualized in Figure 5.2.

77

Figure 5.1: For the drone with potentially corrupted velocity commands, we design a controller
using Proposition 19. The adaptive controller correctly steers the corrupted or normal system into
the correct regions (X (1)

T in red, or X (2)
T in magenta) as is guaranteed by the proposition.

78

Figure 5.2: The potentially corrupted drone system from Section 5.5.2 is implemented by modi-
fying the software of a Crazyflie drone. For the task discussed in the same subsection, we design
an adaptive controller that is guaranteed to steer the drone into region 1 (marked in only masking
tape) on the ground or the repair region (outlined with masking + electrical tape) on the ground.
The decision of which area to land in is determined by what the controller learns over the course
of the experiment.

79

CHAPTER 6

Intention-Aware Supervisory Control with Driving
Safety Applications

6.1 Introduction

We have discussed how to handle parametric uncertainty for tasks with a known deadline in the
past two chapters (Chapters 4 and 5). The assumption that a fixed deadline is known a priori is a
bit strong. In many situations, we are more concerned with task completion (e.g., reaching a target
state safely) than the time it takes to do so.

An example of such a situation is an autonomous vehicle on a highway that wishes to overtake
the vehicle in front of it. There typically is no deadline to execute the maneuver. What is more
important is that the autonomous vehicle completes the maneuver while avoiding collisions and
obeying traffic laws (e.g., speed limits). This problem can not be solved by the finite time horizon
methods of Chapters 4 and 5 because a time horizon typically cannot be determined a priori. In-
stead, we must develop solutions that can operate for an unlimited amount of time before achieving
the task at hand. This chapter discusses how to develop such solutions and returns to the motivating
example (overtake scenario) frequently.

6.2 Problem Statement and Architecture

We start by describing the abstract problem that we are interested in solving. Let PWA system f

of the form (2.6) represent the interaction of an ego agent with other agents where x ∈ X is the
combined states of all agents, control input u(t) = [ue(t)

⊤ uo(t)
⊤]⊤ ∈ Ue × Uo is partitioned

into two parts where ego input ue(t) is controlled by the ego agent and external input uo(t) is
controlled by all other agents, and disturbance w(t) ∈ W captures model uncertainty. We assume
that the other agents behave according to a fixed intention model Ii∗ : X → P≥1(Uo), which is a set
valued mapping that returns a set of external control inputs given a state. That is, if the system is

80

currently at x, then the external control input uo is restricted such that uo ∈ Ii∗(x) ⊆ Uo. While the
actual specific intention model Ii∗ is unbeknownst to the ego agent, a finite set I = {I1, . . . , In}
of intention models is known a priori such that Ii∗ ∈ I. There are two sources of uncertainty
from the perspective of the ego agent: one due to the fact that i∗ is not known, another due to Ii∗

being a set-valued map, capturing the variability within a specific intention. With a slight abuse of
notation, we define I(x) .

=
⋃

I∈I I(x), the set of all possible external control inputs that the ego
agent presumes, given the current state x.

Our goal is to design a supervisor module, which restricts the inputs of the ego agent when
needed, to ensure that the states of the system remain indefinitely in a safe setXsafe ⊆ X . However,
due to the dynamics and disturbances in (2.6), we can only enforce that the system stays in a subset
of Xsafe, which is an RCIS that is computed according to Section 2.5.1.

Let us define a supervisor module before stating the problem of interest formally.

Definition 15. Given a system in the form of (2.6), a set of intention models I, and a safe set

Xsafe, a supervisor module

SI : Xsafe 7→ P(Ue) (6.1)

takes a state measurement x and outputs a set SI(x) ⊆ Ue of admissible ego inputs such that the

admissible inputs ue(t) ∈ SI(x) enforce the system to indefinitely remain in the safe set regardless

of the external input and the disturbance, i.e., SI(x(t)) ̸= ∅ =⇒ SI(x(t + 1)) ̸= ∅ for all

ue(t) ∈ SI(x(t)), uo(t) ∈ I(x(t)) and w(t) ∈ W where x(t+ 1) = f(x(t), u(t), w(t)).

A supervisor’s goal is to keep the system in the safe set. If the admissible ego input safe is
empty, the system must either be in an unsafe state, or it is not possible for the ego agent to
guarantee that the system stays in the safe set indefinitely. That is, there exists a finite sequence of
external inputs, over which the ego agent has no control, and a finite sequence of disturbances that
would eventually steer the system into an unsafe state, regardless of the ego input. On the other
hand, the above definition implies that the set C = {x ∈ Xsafe | SI(x) ̸= ∅} is an RCIS. Given
two supervisors S1

I and S2
I , we say S1

I is more permissive if S2
I(x) ⊆ S1

I(x) for all x ∈ Xsafe. The
key insight in this chapter is that, intuitively, a smaller set of intention models should lead to more
permissive supervisors. That is, if Ĩ ⊂ I, for any SI , there exists SĨ that is more permissive.

We now formally define the problem we are interested in solving and provide a solution method.

Problem 4. Let a PWA system f in the form of (2.6), a set of intention models I and a safe set

Xsafe ⊂ X be given. Find a supervisor module SI as in Definition 15 and a set of initial states

C ⊆ Xsafe such that any trajectory that starts from an arbitrary state x(0) ∈ C is guaranteed to

indefinitely remain in C as long as the control input ue is chosen from the set of admissible inputs,

i.e., ue(t) ∈ SI(x(t)) for all t.

81

Supervisor
Intention

Estimation

Arbitrate
System

f

Other Agent
with Intention Ii∗

uuser(k)

SIv(k)(x(k))

Iv(k)

ue(k)

uo(k)

x(k)

Figure 6.1: Guardian architecture proposed to solve Problem 4.

Problem 4 can be solved using existing methods such as [111]. However, as previously men-
tioned, uncertainty in the external input uo is larger from the perspective of the ego agent since the
intention of other agents is unbeknownst to the ego agent a priori. As a result, the supervisor SI
must be designed so that it would guarantee safety for any intention model, which is conservative
and not desirable. In reality, the ego agent could observe the other agents and decrease the uncer-
tainty by invalidating intention models that are not consistent with the observed external inputs.
Inspired by this observation, we propose a less conservative guardian architecture, which is illus-
trated in Figure 6.1, to solve Problem 4, that consists of a library of supervisor modules and an
intention estimation module:

Definition 16. An intention estimation module

E : (X × Ue)∗ 7→ P≥1(I)

maps any state-ego input trajectory xut
e = {(x(0), ue(0)

)
, . . . , (x(t), ue(t)

)
}, to a non-empty sub-

set Iv(t + 1) = E(xut
e) ⊆ I of valid intentions such that there exist an external control input

uo(k) and disturbance w(k) that satisfy the following for all k ∈ {0, . . . , t}:

x(k + 1) = f (x(k), [ue(k) uo(k)], w(k)) , and

uo(k) ∈ Ii(x(k)) for all Ii ∈ Iv(t+ 1).
(6.2)

An estimation module indicates the set of intention models that are valid by invalidating the
intentions that are inconsistent with a given state-input pair. Since the true intention Ii∗ of the
other agents is assumed to be constant over time, it is always included in the set of valid intentions,
i.e., Ii∗ ∈ E(xue),∀xue ∈ (X × Ue)∗. Note that, lengthening the state-input pair can only refine

82

the set of valid intentions, thus, intention estimation over time is a monotonically non-increasing
set for a system.

Given an instance of Problem 4, a more permissive supervisor can be designed by leveraging the
information gained from such an intention estimation module. To do so, we compute a library of
supervisors {SI ,SI1 ,SI2 , . . . ,SIn}1. As the notation indicates, we design a supervisor SIi for each
possible intention model Ii, together with an intention-agnostic supervisor SI . During run-time,
we switch between the supervisors, depending on the output of the intention estimation module
E . This approach enables us to change the level of permissiveness depending on the observations,
while still guaranteeing safety. That is, we use the supervisor module SI when the true intention of
the other agents is not yet known, and guarantee that the system remains in the safe set. Once the
true intention Ii∗ is revealed by the estimation module E , we switch to the corresponding supervisor
SIi∗ , which is more permissive. As a result, the overall architecture is less conservative.

6.3 The Scenario and System Models

To illustrate the concepts that are presented in this chapter, we choose a simple autonomous driving
scenario and explain the solution method referring to this scenario. However, the concepts we
propose in this chapter apply to the general framework explained in Section 6.2.

Imagine two vehicles moving on a straight road with two lanes as illustrated in Fig 6.2. One
of these vehicles, the ego vehicle, is controllable through ue and can move both in lateral and
longitudinal directions. The other vehicle is called the lead vehicle and its longitudinal motion
is controlled by a fixed intention model chosen from a set of intention models. Intention models
are assumed to react to the ego vehicle when the distance between the cars is less than some
threshold. As stated earlier, while this set of intention models is known to the ego vehicle, the
specific intention model that controls the lead vehicle is not. We assume that the lead vehicle has
no lateral motion and always drives along the center of the right lane. The safety requirement for
the ego vehicle is to keep a minimum safe distance between the vehicles, in both the longitudinal
and the lateral directions.

We now provide dynamics that captures the aforementioned scenario and formally define the
safety requirements.

1An even more permissive design can be achieved if we compute a supervisor for each subset of intentions, i.e.,
compute SIv for each Iv ∈ P≥1(I). However, such an approach would be computationally more expensive as a
trade-off.

83

6.3.1 Dynamics

The vehicles are treated as point masses, and their motion is modeled as follows:

ve,x(k + 1) = ve,x(k) + (ae,x(k)− beve,x(k))∆t+ we,x(k)∆t,

ye(k + 1) = ye(k) + ve,y(k)∆t+ we,y(k)∆t,

vL,x(k + 1) = vL,x(k) + (aL,x(k)− bLvL,x(k))∆t+ wL,x(k)∆t,

(6.3)

where ∆t (= 0.1) is the sampling time, ve,x is the longitudinal velocity of the ego vehicle, ye is
the lateral displacement of the ego vehicle with respect to the center of the right lane, and vL,x

represents the longitudinal velocity of the lead vehicle. The ego vehicle is controlled through
its longitudinal acceleration ae,x and lateral velocity ve,y. The longitudinal acceleration of the
lead vehicle, aL,x, depends on the intention and is treated as external disturbance. Terms be (=
0.1) and bL (= 0.1) are drag coefficients and we,x(k) ∈ [−.15, .15], we,y(k) ∈ [−.09, .09] and
wL,x(k) ∈ [−.05, .05] are process noises. The relative longitudinal distance between the two
vehicles is denoted by h and evolves according to the following:

h(k + 1) = h(k) + (vL,x(k)− ve,x(k))∆t. (6.4)

As indicated by (6.4), positive values for h imply that the ego vehicle is behind the lead vehicle.
We now define the vectors x(k) = [ve,x(k), ye(k), h(k), vL,x(k)]

⊤, ue(k) =

[ae,x(k), ve,y(k)]
⊤, uo(k) = [aL,x(k)], u(k) = [ue(k), uo(k)]

⊤, w = [we,x(k), we,y(k), wL,x(k)]
⊤,

and combine (6.3) and (6.4) in to the form (2.7), where X = [vmin
e,x , vmax

e,x] × [ymin
e , ymax

e] × R ×
[vmin

L,x , v
max
L,x].

6.3.2 Intention Models

We consider two driver intentions, denoted by I ∈ {Ia, Ic}, corresponding to Aggressive and
Cautious drivers2. Here, these drivers react to the ego vehicle only when it is close enough, that is,
when the absolute value of the longitudinal distance is less than some threshold. This area is called
the reaction zone and is illustrated in Fig. 6.2. When the ego vehicle is inside the reaction zone,
the external input uo is determined by an affine state-feedback policy; otherwise only a bound on
the velocity is imposed in the choice of uo. Having the reaction zone captures two properties:
(i) since intentions are feedback policies in our setup, it is reasonable to assume feedback occurs
when the vehicles are in the vicinity of each other, (ii) fixed intention assumption is automatically
relaxed to intention being unchanged only within the reaction zone as outside the reaction zone the

2We choose two intentions to clearly illustrate these concepts and stress to the reader that our framework is general
enough to incorporate as many intention models as available.

84

Table 6.1: Parameters in intention models

amax
L,x 3m/s2 amin

L,x 3m/s2 wmax
∆ 0.1 wmin

∆ 0.1
vmin
L,x 0m/s vmax

L,x 33.5m/s Kdes 1 KA [1 0 0 -1]
KC [0 -0.1 0.1 -0.01] kc 0.01 vdes

L,x 30m hr 60 m
hmin 10m vmin

e,x 16m/s vmax
e,x 36m/s ymin

e −0.9m
ymax
e 2.7m

assumptions on all vehicles are the same. In addition to the acceleration bounds captured by Uo,
we assume the lead car velocity is bounded by vL,x(k) ∈ [vmin

L,x , v
max
L,x]. One thing to note is that

an affine state-feedback might lead to violation of the assumed acceleration and velocity bounds.
These bounds mimic the physical limitations of the vehicles, thus, it is assumed not possible to
exceed them. Thus, external input uo is saturated when needed. The resulting dynamics for each
intention model can be represented as a PWA system as described by Table 6.1 with input bounds
given by Ue = [−3, 3]× [−1.8, 1.8] and Uo = [−3, 3].

6.3.2.1 Aggressive Driver

Tries to match the speed of the ego vehicle when the ego vehicle is inside the reaction zone, thus
making it harder to overtake:

aL,x(k) =

max(min(Kax(k), α1), α2) + w∆(k), if |h(k)| ≤ hr,

max(min((vdesL,x − vL,x(k)), α1), α2) + w∆(k), o.w.
(6.5)

where

α1 = min

(
amax
L,x ,

vmax
L,x − (1− bL∆t)vL,x(k)

∆t

)
− wmax

∆ − wmax
L,x

α2 = max

(
amin
L,x ,

vmin
L,x − (1− bL∆t)vL,x(k)

∆t

)
− wmin

∆ − wmin
L,x .

(6.6)

The min and max operations in (6.5) and (6.6) ensure that the acceleration and velocity bounds
for the lead vehicle are always respected. Note that the action of the aggressive driver is non-
deterministic due to the term w∆(k) ∈ [wmin

∆ , wmax
∆], which captures the variability within each

intention model. Due to min and max operators used, resulting dynamics fa = {(f j
a , D

j
a)}9j=1 is a

PWA system with nine regions.

85

Figure 6.2: The red and blue vehicles represent the lead vehicle and ego vehicle, respectively. The red and
blue boxes indicate the unsafe and the reaction zone, respectively.

6.3.2.2 Cautious Driver

Tends to maintain its desired speed and makes it easier for ego vehicle to change lane or overtake.
The cautious driver is modeled as follows:

aL,x(k) =

max(min(Kcx(k)+kcv
des
L,x, α1), α2) + w∆(k), if|h(k)| ≤ hr,

max(min((vdesL,x − vL,x(k)), α1), α2) + w∆(k), o.w.
(6.7)

where α1 and α2 are defined as in (6.6). The resulting dynamics fc = {(f j
c ,Dj

c)}9j=1 is a PWA
system with nine regions.

6.3.2.3 Bounded Velocity

When the intention of the lead vehicle is not known, we assume the worst case scenario and let
vL,x(k) to change arbitrarily fast. That is, vL,x(k+1) can take any value between the lower and the
upper bound, regardless of vL,x(k). By doing so, we capture the behavior of both intentions. We
use this conservative model when the intention of the lead vehicle is not known.

6.3.3 Safety Requirements

The ego vehicle is required to keep a minimum distance between two vehicles at all times. In this
case, we can represent the set Xsafe of safe states as follows:

Xsafe
.
= X 1

safe ∩ X 2
safe ∩ X 3

safe, (6.8)

86

where X 1
safe

.
= {x ∈ X | |h| ≥ hmin or ye ≥ |ymin

e |} capturing safe distance during takeover,
X 2

safe
.
= {x ∈ X | ye ∈ [ymin

e , ymax
e]} capturing lane keeping constraints, and X 3

safe
.
= {x ∈ X |

ve,x ∈ [vmin
e,x , vmax

e,x]} capturing the speed limits. Note that, the resulting set Xsafe of safe states is
not convex, but it can be represented as a union of polyhedra.

6.4 The Guardian for the Overtake Scenario

Together, a library of RCIS for each intention in 6.3.2 and an intention estimation module define
the guardian for the overtake scenario. So, this section begins by discussing guarantees and meth-
ods for constructing a library of RCIS. Then, an intention estimation module is formally defined.
Finally, we prove that integrating these two parts provides safety and is less conservative than
previously considered models.

6.4.1 Library of RCIS

An RCIS can be constructed using any of the methods described in Section 2.5.1. Specifically, we
leverage the inside-out algorithm of [111] to compute an RCIS for each intention model Ij ∈ I.
The reader can recall that the inside-out algorithm uses an initial RCIS and expands it to obtain a
final RCIS. One fact that we can use to generate such an initial, simple RCIS is given as follows:

Proposition 20. The set Cleft
.
= {x ∈ X | ye ∈ [0.9, 2.7]} of states corresponding to the left lane

is an RCIS for any intention.

The proposition is stated without proof because the lead car cannot move laterally (i.e., it can-
not change it’s y position in the lane); thus, the proposition immediately follows from the model
definition.

Given this proposition, one can apply the inside-out algorithm by setting the ‘left lane’ states
as the initial RCIS, i.e., C0 = Cleft, for any of the intention models discussed in Section 6.3.2. A
more involved, but helpful result that can be used to ease computation is:

Proposition 21. Any set Cbnd ⊆ Xsafe that is a controlled invariant set for the bounded velocity

model is also a controlled invariant set for the aggressive and the cautious driver intention models.

Proof (sketch). While the acceleration of the lead vehicle aL,x has a specified bound for the ag-
gressive and the cautious driver intention models, the bounded velocity model has no such bound
on the lead vehicle’s acceleration (i.e., the lead car may change its velocity arbitrarily fast). Thus,
if it is possible to remain robustly safe in the bounded velocity model, then when the lead car’s
acceleration is more restricted than the bounded velocity model allows, it should be the case that
the ego vehicle can remain safe in all states in Cbnd.

87

Thus, the previous two propositions can be used to synthesize a set of RCIS, corresponding to
each of the intention models described in Section 6.3.2 {Cbnd, Ca, Cc}. Specifically, one can use
Proposition 20 to identify the left lane as the initial RCIS, i.e., set C0 = Cleft, and apply the inside-
out algorithm for the bounded velocity model to obtain Cbnd. After that, the resulting set Cbnd can
be used as the initial RCIS for the inside-out algorithm according to Proposition 21, for each of the
two intentions. Each of these RCISs induces a supervisor. For instance, for i ∈ {a, c}, we have
SIi(x) = {ue ∈ Ue | fi(x, u, w) ∈ Ci, ∀w ∈ W ,∀uo ∈ Ii(x)}. And, SI is defined similarly from
Cbnd. Moreover, these supervisors by construction satisfy the following:

Proposition 22. SI ⊆ SIi and CI ⊆ CIi for i ∈ {a, c}.

6.4.2 Intention Estimation

Intention estimation techniques can roughly be categorized into two categories: active [35, 46] and
passive [83, 109] methods. The former assumes that the intention estimation method can modify
the controller’s commands. The latter, on the other hand, assumes that the intention estimation
module cannot modify control signals and must perform the discrimination operation using the
observations gathered by the sensors. Our guardian architecture uses a passive intention estimation
scheme to allow maximal permissiveness and to avoid violation of any safe input constraints.

Given a state-input trajectory xut
e = {(x(0), ue(0)), . . . , (x(t), ue(t))} and two intention mod-

els I = {Ia, Ic} as in Section 6.3.2, intention estimation aims to determine whether or not the
state-input trajectory is consistent with model i ∈ {a, c}. This problem can be posed as a linear
program at each time t, similar to [65]:

find {uo(k), w(k)}t−1
k=max (t−N,0)

s.t. for all k ∈ {max (t−N, 0), . . . , t− 1}

x(k + 1) = f j
i (x(k), u(k), w(k)) if x(k) ∈ Dj

i ,

uo(k) ∈ Ii(x(k)) and w(k) ∈ W

(LPt
i)

where N is a horizon to keep the estimator of finite memory. Note that, infeasibility of LPt
i implies

88

that the intention model is not Ii. Therefore, the estimator E is defined as:

E(xut
e) =



Ia, if E(xut−1
e) = Ia

or LPt
c is infeasible,

Ic, if E(xut−1
e) = Ic

or LPt
a is infeasible,

I, otherwise.

(6.9)

6.4.3 Putting things together

Having designed a library of RCIS and the intention estimation module, at run-time, we initialize
the estimated intention for the intention-aware supervisor as the bounded velocity model, i.e.,
Iv(0) = I. As the intention estimation model E refines the valid intention models Iv by collecting
data, the intention-aware supervisor is updated accordingly.

Theorem 4. Assume that the intention of the other vehicle is not changing with time (i.e., Ii∗ is

constant for the driving scenario) and Ii∗ ∈ I = {Ia, Ic}. If x(0) ∈ Cbnd and ue(t) ∈ SIv(t)(x(t))
for all t where Iv(t) = E(xut−1

e), then we have x(t) ∈ Xsafe for all t.

Proof. First note that the linear program (LPt
i) will always be feasible for i = i∗ as we assume Ii∗

is constant over time. Therefore, Ii∗ ∈ Iv(t) for all t. The intention estimation is initialized with I.
By construction, SI(x(0)) ̸= ∅ for all x ∈ Cbnd. Now, assume that the intention estimation module
never detects the correct intention (i.e., Iv(t) = I for all t). Since SI(x(0)) ̸= ∅, it follows from
Def. 15 by induction that SIv(t)(x(t)) ̸= ∅ and x(t) ∈ Cbnd ⊆ Xsafe for all t. Now, assume that
intention estimation module eventually reveals the true intention Ii∗ , i.e., there exists a t∗ such that
Iv(t∗) = Ii∗ . We know that the state of the system is safe (x(t) ∈ Cbnd ⊆ Xsafe) for t < t∗ by using
SI . Moreover, by Proposition 22, at time t∗, SIi∗ (x(t∗)) ⊇ SI(x(t∗)) ̸= ∅ and x(t∗) ∈ Cbnd ⊆ Ci∗ .
By Eq. (6.9) and the assumption on constant intention, we will have Iv(t) = Ii∗ for all t ≥ t∗.
Now, again, it follows from Def. 15 by induction that SIv(t)(x(t)) ̸= ∅ and x(t) ∈ Ci∗ ⊆ Xsafe for
all t ≥ t∗.

6.5 Results

In this section, we discuss the results of the proposed solution to Problem 4 for the driving scenario
presented in Section 6.3. We briefly describe the tools and methods used to implement the invariant
set algorithms. We then illustrate the intuitive conclusions that can be made about the RCIS and
safe (admissible) input sets of various estimated intentions.

89

(a) Projection of the invariant set onto (ve,x, ye, h)
space

(b) Sliced invariant sets given the ve,x and vL,x (in
m/s)

Figure 6.3: The invariant sets for the bounded velocity model (red) and the model of the cautious driver
intention (red+blue, the result after 5 iterations).

6.5.1 Implementation and Experimental Setup

We use the inside-out method described in Section 2.5.1 to compute RCIS and safe input sets.
We use polyhedra (or union of polyhedra) representation of sets in our algorithm, since it forms
a closed class of objects under set operations such as intersection and projection. The code is
implemented on top of the Multi-Parametric Toolbox 3.0 (MPT3) [70], a MATLAB toolbox with
efficient implementations of polyhedra manipulations. The system dynamics, intention models and
the safety requirements are as stated in Section 6.3.

6.5.2 RCIS Computation Results and Discussion

We first compute an RCIS for the bounded velocity model. The seed set for the inside-out algorithm
is chosen as the left lane, i.e., C0 = Cleft, which is shown to be robust controlled invariant in
Proposition 20. The algorithm converges in 12 iterations and the resulting RCIS is shown as the
red regions in Figures 6.3a and 6.3b.

Due to Proposition 21, RCIS for the bounded velocity model is also robust controlled invariant
for the other intentions. Thus, we initialize the inside-out algorithm with this new seed in the
following computations. The resulting set after 5 iterations for the cautious driver intention model
is shown as the union of the red and blue regions in Figures 6.3a and 6.3b. The blue region
indicates the difference between the RCIS of the cautious driver and the bounded velocity model.
The results show that, by estimating the intention model, we indeed have a larger invariant set.

90

-2 0 2

-1

0

1

-2 0 2

-1

0

1

-2 0 2

-1

0

1

Figure 6.4: Safe inputs (blue regions) at state [25, −0.297, 16.52, 20]⊤ for aggressive driver intention
(left), cautious driver intention (middle) and bounded velocity model (right).

On the other hand, RCIS obtained for the aggressive intention is almost visually indistinguishable
with the invariant set for the cautious intention, but as can be shown in Figure 6.4, their sets of
admissible inputs corresponding to the same state can be different.

Note that, as shown in Figure 6.4, the safe input set can be non-convex. In that case, the
projection to each dimension can be done in an order, according to a user defined priority. For
example, speed change may be perceived as less “invasive” compared to a steering angle change
from the human user perspective. In this case, projection onto the throttle input space may be
preferred over the projection onto the steering input space.

6.5.3 Overtaking Simulation

We perform an overtaking simulation in MATLAB to show how the ego car and the lead car behave
with and without the supervisor, with a baseline switched MPC controller for the ego car that is
chosen to mimic a human driver that undertakes the overtaking task. In the supervised case, the
supervisor is implemented using the controlled invariant sets obtained by our proposed algorithm.
On the other hand, the lead car behaves according to one of the two intentions. To view the
simulation videos, please refer to our YouTube channel 3.

Figure 6.5a shows the MPC control inputs over time in the simulations with no supervision
for the case where the lead car driver is cautious. The red lines show the MPC inputs and the
blue shadow shows the safe range of throttle/steering inputs (obtained by slicing the safe input
set at each time) given the user-selected steering/throttle inputs. The region without blue shadow
corresponds to the time when the ego car is out of the invariant set, since no supervision is ap-
plied. In Figure 6.5a, the blue shadow in the second row covers more time steps than the first row,

3https://www.youtube.com/playlist?list=PLTwM5p2COdg3AfXlSa6r_I0t0FnsU8vZF

91

https://www.youtube.com/playlist?list=PLTwM5p2COdg3AfXlSa6r_I0t0FnsU8vZF

(a) MPC without supervision

(b) MPC with supervision

(c) Human driver without supervision

Figure 6.5: The control inputs (red lines) of the ego vehicle over time (in seconds) for the following
scenarios with and without supervision: ego car tailgates the lead car for a few seconds and then overtakes.
The ego car in (a), (b) is controlled by an MPC controller, but in (c) is controlled by a human driver using
the vehicle simulator in Figure 6.6. The lead car has cautious intention. The blue lines and shadow label
the range of safe inputs given by the invariant sets. The cyan dash line labels the time when the intention
estimation gives the correct intention. The green line in (b) labels the time when the ego car’s inputs are
overridden by the supervisor. The safe input ranges in the first and second rows in (a), (c) are computed with
respect to the bounded velocity model and the cautious driver intention model respectively.

92

which implies that the invariant set for the cautious driver intention contains more states than the
invariant set for the bounded velocity model. Therefore, once the intention of the lead vehicle is
discovered (shown by cyan vertical dashed lines), the supervisor will behave less conservatively
(i.e., will allow more user-selected inputs) by switching to the supervisor for the estimated inten-
tion. This is indeed the case, as can be seen in Figure 6.5b, where the intention estimation and the
guardian/supervisor are engaged.

In the YouTube video list, Simulation 1 shows the animation that compares the results in Figure
6.5a and 6.5b. The same scenario with the aggressive intention is shown in Simulation 2. In
addition, in the videos of Simulations 3 and 4, MPC is tuned to mimic a safe driver and a “bad”
driver (more likely to crash with the lead car), respectively. Simulation 3 shows how such a “bad”
driver crashes into the lead car in this scenario, but with supervision the driver is prevented from
causing a crash. Furthermore, experimental results in Simulation 4 suggest that if the ego driver
is already very careful, e.g., always keeping a safe distance with the lead car, the supervisor rarely
needs to override.

6.5.4 Results from Driving Simulator

We also collected data using a driving simulator, where a human-driver is asked to perform an
overtaking maneuver as described in the previous subsection. The dynamics are implemented in
MATLAB/Simulink which interfaces with Unreal Engine 4 for visualization. The hardware used is
a Logitech Driving Force G920 Racing Wheel for human control inputs (steering and acceleration).
Fig. 6.6 shows the setup of the simulator. Fig. 6.5c shows the data from human-driver overlaid with
the guardians assessment of its safety. As can be seen in the figure, the estimation of the intention
significantly reduces the times human input needs to be overridden to guarantee safety.

93

Figure 6.6: Driving Simulator

94

CHAPTER 7

The Inter-Triggering Hybrid Automaton

7.1 Introduction

Recall that, in this dissertation, information uncertainty refers to the uncertainty which occurs when
a single agent (or robot) must make a decision as part of a team, but does not directly observe the
entire team. The single agent only has understanding about its individual state and the states of its
neighboring teammates. Having a local understanding means that it can be difficult or impossible
for the team to coordinate to optimally achieve a task like safety.

For example, consider a collection of cars on the highway. While the collection of vehicles
might share the goal of traveling down the highway at the speed limit, a single car on the highway
may need to slow down to take an exit or speed up to pass a vehicle in front of it. When the single
vehicle makes these decisions it typically shares information about what it’s doing via indicator
lights, but this information is only visible to nearby vehicles. Coordination in this context is thus
very difficult because little communication is shared about goals (e.g., exiting the highway) and
the communication is through a very limited channel (i.e., the indicator light). We shall return to
this example later on in this chapter.

Achieving a safety task using local information typically requires deep knowledge of other
agents on the team, but this chapter presents a method that allows for safety guarantees to be
made for the team using abstract, simple notions of interactions between agents, encoded with the
idea of responsibility-sensitive safety. This chapter defines this new notion of safety and then dis-
cusses how it can be guaranteed with RCIS-based controllers. It also describes how responsibility-
sensitive safety can be modified to incorporate different levels of perception of the world around an
agent as well as what amount of responsibility the team would like to have for each team member.

95

7.2 A modeling formalism for interacting systems

We introduce inter-triggering hybrid automata (ITHA), a hybrid modeling formalism for collec-
tions of discrete-time hybrid systems with a special form of interaction between them. In particu-
lar, these interactions are such that they induce jumps or resets on the state evolution of individual
agents.

Definition 17. An inter-triggering hybrid automaton is a collection {Hi}i∈I of systems together

with a function ρ = (ρ1, . . . , ρ|I|), which we refer to as a resolution function, with each Hi, i.e.,

agent i, being a hybrid automaton of the formHi = ⟨Σi, Ti, Ri⟩, where:

• Σi = ⟨Xi,Ui,Di, fi⟩ are the individual dynamics for agent i;

• Ti is the set of triggering actions of agent i, including a null triggering action ϵ ∈ Ti that

indicates that agent i is not triggering a reset on any other agent;

• Ri : N×Xi × Ui × 2I → 2Xi is the (potentially time-varying) reset map for agent i1;

and where each ρi : N × T1 × · · · × T|I| → 2I is the resolution function of agent i that takes the

triggering inputs of the entire collection and determines the set of agents that trigger a reset on

agent i.

For notational simplicity when referring to an ITHA, we will omit the resolution function and
simply say “an ITHA {Hi}i∈I”. We assume the resolution function ρ satisfies the following prop-
erty, which essentially says if agent i is using a null triggering action at a given time, it will not
appear in the output of the resolution function of any agents at that time.

Assumption 2. For all i, for all t such that τi(t) = ϵ, we have i /∈ ρj(t, . . . , τi(t), . . .) for all j,

which implies, as a special case, ρi(t, ϵ, . . . , ϵ) = ∅.

Definition 18 (Execution of an ITHA). Given sequences of control inputs ui = ui(0), ui(1) . . .

and triggering inputs τ i = τi(0), τi(1) . . . for each agent i, an execution of {Hi}i∈I is

a collection of sequences {ei}i∈I , each a sequence of alternating states and actions ei =

xi(0), ui(0), τi(0), xi(1), ui(1), τi(1), ... such that:

xi(0) ∈ Xi ∀i ∈ I (7.1a)

(ui(t), τi(t)) ∈ Ui × Ti ∀i ∈ I,∀t ≥ 0 (7.1b)

1With a slight abuse of notation, the last argument of the reset map is shown as an index set, but the actual reset
value depends on the state, input, and triggering action of the agents in that set.

96

0start 1 2 · · · · · · · · · · · ·

nthrottle − 1

nthrottle

nthrottle + 1

· · · · · ·

noverflow − 1

noverflow

noverflow + 1

Figure 7.1: The individual dynamics for a processor in the collection specified in Example 4.
The processor is unable to accept as many jobs when xi(t) ≥ nthrottle and it experiences a stack
overflow (i.e. it fails) if xi(t) ≥ noverflow.

xi(t+ 1) ∈

fi(xi(t), ui(t),Di) if ρi(t) = ∅,

Ri(t, xi(t), ui(t), ρi(t)) otherwise.
(7.1c)

where ρi(t) ≜ ρi(t, τ1(t), τ2(t), ..., τ|I|(t)).

For an element ei of an execution, we denote the corresponding state trajectory by xi =

xi(0), xi(1), We consider problems related to safety of an execution of an ITHA, where we
require the state trajectory of each agent Hi to remain in a safe set Xi,safe ⊆ Xi for all times. We
use an execution {ei}i∈I remaining in a collection of sets {Xi,safe}i∈I inter-changeably with the
corresponding state trajectories {xi}i∈I remaining in the same collection.

To make the definition of inter-triggering hybrid automaton concrete, we present two examples
used throughout the chapter.

Example 4 (Parallel Processors on a Server Farm). A collection of processors in a server farm

can be treated as a collection of agents where each agent’s state is the number of jobs it has left to

compute. In other words, agent i’s state xi ∈ N, where there is a limit of jobs, noverflow, over which

the processor will create a stack overflow and fail. External jobs di for processor i are passed into

the server according to a protocol that blocks new jobs from coming in if xi ≥ nthrottle where

nthrottle < noverflow and the processor always can take the action to address a job in its queue

or do nothing. Thus, the individual dynamics can be visualized as shown in Fig. 7.1. In addition,

the processors can be recruited by other processors according to a directed graph G that indicates

which processors can send jobs to which other processors, i.e. processor i can recruit processor

j if (i, j) ∈ E . An example of such a graph is shown in Fig. 2.1. This scenario can be modeled

with the representation {Hi}i∈I , where each agentHi = ⟨Σi, Ti, Ri⟩ is composed of the following

parts:

• Dynamics Σi where Xi = N is the queue of jobs to be done by agent i; Ui = {0,−1}
represents processor i’s choice to do nothing (i.e. ui(t) = 0) or to address one of the jobs

in its queue (i.e. ui(t) = −1); Di ∈ {0, 1, 2} represents the number of external jobs passed

97

into processor i, and fi, given by

fi(xi, ui, di) =

xi + ui if xi ≥ nthrottle

xi + ui + di otherwise,

describes how the queue of jobs is changing for agent i in the absence of it being recruited;

• Ti = 2outG(i) represents the possible sets of agents that agent i recruits to help it with its

queue, with null element ϵ = ∅, according to its outgoing edges in G;

• Reset map Ri describes how the queue for agent i changes if it was recruited by or recruited

another agent. To each agent in the recruit set (i.e. ∀j ∈ τi(t) ∈ Ti), agent i sends 1 job

from its queue to that processor:

Ri(t, xi(t), ui(t), S) =

0 if si(t) ≤ 0,

si(t) otherwise,
(7.2)

where si(t) = xi(t) − |τi(t)| + ui(t) + |S| + di(t), where S is the set of agents recruiting

agent i.

Furthermore, we can write the ith component of the resolution function ρi(t) = {j ∈ I | i ∈
τj(t)}; that is, the set of agents triggering agent i at time t is the set of agents which contain i in its

triggering action at time t. Concretely, for agent 1 in Fig. 2.1, ρ1(t) ⊆ {2, 4}, for all t. If τ2(t) = ϵ

and τ4(t) = {1, 6}, then ρ1(t) = {4}, regardless of the triggering actions of the remaining agents.

Note that each processor can avoid the overflow states indefinitely if it is within a robust control

invariant set that is completely contained in the safe set {x ∈ N | x < noverflow}. Under the

individual dynamics, the maximal control invariant set in the safe set (i.e. C ⊆ {x ∈ N | x <

noverflow}) can be quickly shown to be C = {x ∈ N | x ≤ noverflow − 1}. Depending on the

objectives of the processors, i.e. maximizing throughput, each processor may need to trigger other

agents, and without adequate precaution the triggering can reset the states of some processors

above noverflow, leading to unsafe behavior.

Example 5 (Highway Driving). Consider a collection of vehicles travelling in the same direction

on a highway (see Fig. 7.2). This collection can be represented by an inter-triggering hybrid

automaton {Hi}i∈I where each agentHi = ⟨Σi, Ti, Ri⟩ is composed of:

• Dynamics Σi with Xi = [0, vmax] × [0,∞) × [0, vmax], where state xi = [vi, hi, v
L
i]

⊺ con-

tains vi (velocity of current agent i, henceforth referred to as the ego vehicle), hi (headway

between this agent and the nearest car in front of it on the same lane, henceforth referred

98

L3

L1

F2

E hrel
L1

hrel
L3

hrel
F2

Figure 7.2: A collection of vehicles on the highway, as described in Example 5. The ego vehicle E
is marked in blue, and longitudinal distances between the ego vehicle and car i are marked as hrel

i .

v
L i

vihi

Figure 7.3: The controlled invariant set for
the car-following system defined in (7.3) for
parameters used in [111, 149].

to as the lead vehicle), and vLi (the velocity of the lead vehicle), Ui is the set of allowed

inputs, with input ui = ai being the acceleration of the ego car, Di is the set of allowable

disturbances, with disturbance di = aLi being the acceleration of the lead vehicle, and the

system dynamics fi : Xi × Ui ×Di → Xi is such that

fi(xi, ui, di) =

 1 0 0

−∆t 1 ∆t

0 0 1

xi +

∆t

0

0

ui +

 0

0

∆t

 di (7.3)

where ∆t is the sampling time;

• Ti = {stay, left, right} is the set of possible lane change decisions, with null element ϵ =

stay;

• A reset Ri(t, xi(t), ui(t), ρi(t)) is triggered on agent i if one of the following happens (1)

τi(t) ̸= ϵ, (2) if their lead car is j and τj(t) ̸= ϵ and/or (3) a car becomes the current agent’s

lead car (i.e. lead car was j at time t − 1 but the lead car becomes k ̸= j at time t). The

value of the reset depends on the triggering actions of all agents ρi(t), which can possibly

affect agent i at time t. This determines the new lead car and hence the new values of hi and

vLi , while vi evolves according to individual dynamics in (7.3). A more precise discussion of

the reset map is considered in Appendix B.

Controlled invariant sets for the system defined in (7.3) can be computed using polyhedral set

99

computation methods such as those discussed in [111, 149]. An example of such a set is shown in

Fig. 7.3.

To further illustrate how the reset map is defined for highway driving, the value of Ri will be

explained for some vehicles in Fig. 7.2. First, suppose that the current time is t and vehicles E

and F2 have states xE = [vE, hE, v
L
E]

⊺ and xF2 = [vF2 , hF2 , v
L
F2
]⊺, respectively, and apply control

inputs uE and uF2 . Suppose that the ego vehicle makes a left lane change at time t; this action

triggers a reset of its own continuous state as well as that of F2 (leading to changes in headway

and lead car velocity for both vehicles). Formally, if τE(t) = {left}, then

RE(t, xE, uE, {E}) =

vE +∆tuE

∞
vmax


and

RF2(t, xF2 , uF2 , {E}) =

 vF2 +∆tuF2

hrel
F2

+ (vE − vF2)∆t

vE +∆tuE


where we assume by convention that resetting an agent to have no lead car results in a headway of

∞ and a lead car velocity of vmax.

As concrete examples, we overview a subset of possible values that the resolution function

may take in the highway setting. We can write ρE(t, τE(t) = left, τL1(t) = ϵ, τF2(t) = ϵ, τL3(t) =

right) = {E,L3}, as both the ego vehicle and vehicle L3 changing lanes resets the continuous state

of the ego vehicle. Likewise, we can write ρE(t, τE(t) = ϵ, τL1(t) = ϵ, τF2(t) = right, τL3(t) =

ϵ) = ∅, as F2 will not trigger a state reset on the ego vehicle. Vehicle L1 can also trigger a reset

on the state of the ego vehicle by changing lanes, i.e. ρE(t, τE(t) = ϵ, τL1(t) = left, τF2(t) =

ϵ, τL3(t) = right) = {L1}. A final, more complicated case occurs when vehicles E and L1 both

make a left lane change, while L3 makes a right lane change at the same time: ρE(t, τE(t) =

left, τL1(t) = left, τF2(t) = ϵ, τL3(t) = right) = {E,L3}; in this case, L1 does not end up factoring

into the resolution function as L3 becomes the ego vehicle’s lead car instead.

7.3 Compositional Safety Rules

In general, not all executions of an inter-triggering hybrid automaton are safe. To render the exe-
cutions safe, control policies may need to restrict the possible control inputs and triggering actions
of individual agents. In this section, we develop sufficient conditions on local control policies
that collectively guarantee safety. To do this, robust controlled invariant sets are found for the

100

inter-triggering hybrid automaton’s individual dynamics and then responsibility-sensitive safe con-
trollers are defined with respect to these individual invariant sets. This section shows that safety can
be guaranteed when all agents in the collection use such responsibility-sensitive safe controllers
and then discusses how conservativeness can be further reduced via a communication scheme.

7.3.1 Control Policies and Safety Control Problem for ITHA

At run-time each agent i picks its control inputs ui(t) and triggering actions τi(t) based on the
information available to it by time t. Formally, for a given set Yi of possible observations of agent
i, a memoryless local controller (or, control policy) is a function γi : Yi → Ui × Ti. Similarly, a
local controller with memory is a function γi : Y+

i → Ui × Ti, where the superscript + denotes
finite non-zero repetition. If agent i’s decisions only depend on its own state or the state of all
agents, we have Yi = Xi or Yi = X1 × . . . × X|I|, respectively. Also, if an agent can access a
(potentially time-varying) subset of other agents’ states, we have Yi =

⋃
I′⊂I{Xj}j∈I′ . In addition

to states, Yi can incorporate observations of actions of the other agents, which would be relevant
when introducing the communication scheme in section 7.3.3.2.

Definition 19 (Controlled Execution of an ITHA). Given a collection of controllers {γi}i∈I ,

{γi}i∈I-controlled executions of {Hi}i∈I are the set of executions where control inputs ui and

triggering inputs τ i are produced according to the function γi for all i.

Given a collection of local safe sets {Xi,safe}i∈I and information Yi available to each agent,
synthesizing local controllers for each agent to guarantee global safety is a distributed synthesis
problem [118]. Verifying existence of such controllers is known to be undecidable in general even
when the sets Xi, Ui, Di are finite [52, 33]. Any architecture defining the information flow in a
distributed synthesis problem can be captured by choosing some I ′i and setting Yi = {Xj}j∈I′

i
,

therefore synthesis in the ITHA setting cannot be easier. Given this hardness result, we instead
search for sufficient conditions on local controllers under which global safety is guaranteed. These
conditions can be checked locally and instantaneously in time. Moreover, instead of working with
a fixed observation structure, we will deduce the sets Yi each local agent should have access to in
order to be able to comply with the conditions.

7.3.2 Responsibility-Sensitive Safety

Responsibility-sensitive safety consists of two rules. The first rule handles safety of the individual
dynamics and the second rule handles safety during triggering interactions. Consider the first rule:

101

Definition 20 (Self-Safety). A control policy γi renders agentHi self-safe on a set Xi,c ⊆ Xi if for

all states in Xi,c, the control input guaranteesHi’s own safety assuming a reset will not happen in

the next step. In math, for all t, if xi(t) ∈ Xi,c, then ui(t) produced by γi is such that

fi(xi(t), ui(t),Di) ⊆ Xi,c. (7.4)

It is clear from (2.9) that for the existence of a self-safe controller onXi,c,Xi,c should be a robust
controlled invariant set. Moreover, the controller would only need information on the agent’s own
state to be in Yi. Though even when Xi,c’s are robust controlled invariant sets for Σi’s, adopting a
controller that rendersXi,c invariant, an agentHi cannot be guaranteed to remain inXi,c because its
state trajectories depend on both fi and Ri. To incorporate the potential resets of agent Hi into an
invariance condition, any agent j contributing to a reset on agent i, i.e., j ∈ ρi(t), should somehow
make guarantees about Ri on the same set. While it may be problematic to expect agents to know
ρ in a distributed setting, an over-approximation of the value of ρ at each time step, as defined next,
can be obtained locally in many practical scenarios.

Definition 21 (Resolution Over-approximation). A function ρ̂i : N × T1 × T2 × · · · × T|I| → 22
I

is an over-approximation of the ith component of the resolution function if and only if:

ρi(t, τ
′
1, τ

′
2, · · · , τ ′|I|) ∈ ρ̂i(t, τ

′
1, τ

′
2, · · · , τ ′|I|).

for all values of t and all τ ′i ∈ Ti for all i. Similarly, we say ρ̂ is an over-approximation of

the resolution function ρ, denoted as ρ̂ ⊇ ρ, if and only if each ρ̂i is an over-approximation of

corresponding ρi.

For notation convenience, when the triggering action arguments of ρ̂ are clear from the context
or are irrelevant, we simply write ρ̂i (t). We discuss how resolution over-approximations can be
obtained locally by each agent in Section 7.3.3. In general, different agents j might have different
resolution over-approximations ρ̂(j) ⊇ ρ depending on their local information. With this in mind,
to enable safety through resets, we define a responsibility rule that uses such over-approximations.

Definition 22 (ρ̂-Responsibility). Given an over-approximation ρ̂ of the resolution function and a

collection {Xi,c}i∈I of sets, a controller γj renders an agent Hj ρ̂-responsible with respect to the

sets {Xi,c}i∈I if, when agent j triggers a reset on other agents, agent j’s triggering action does not

lead to safety violations for any other agent that it could induce a reset on according to ρ̂, possibly

including itself. In math, the controller γj renders Hj ρ̂-responsible, if for all t, τj(t) and uj(t)

produced by the controller are such that if τj(t) ̸= ϵ and xi(t) ∈ Xi,c ∀i ∈ I , then for all i ∈ I

102

and S ∈ ρ̂i(t) with j ∈ S we have:Ri(t, xi(t),Ui, S) ⊆ Xi,c if i ̸= j, and

Ri(t, xi(t), ui(t), S) ⊆ Xi,c if i = j.
(7.5)

We use controller being ρ̂-responsible (or, self-safe), agent being ρ̂-responsible (or, self-safe)
and controller rendering an agent ρ̂-responsible (or, self-safe), interchangeably. With all of the
above the following theorem can be stated, which provides a recursive safety guarantee.

Theorem 5. Consider an inter-triggering hybrid automaton {Hi}i∈I , an accompanying collection

of sets {Xi,c}i∈I that are robustly controlled invariant for respective Σi’s in their respective safe

sets {Xi,safe}i∈I and a collection {ρ̂(i)}i∈I of resolution over-approximations. Then,

1. there exists local controllers γi for each agent Hi that render them self-safe and ρ̂(i)-

responsible with respect to the sets {Xi,c}i∈I and

2. if each agent uses a controller γi that renders itself self-safe and ρ̂(i)-responsible with respect

to the sets {Xi,c}i∈I , the state trajectories corresponding to any {γi}i∈I-controlled execution

of {Hi}i∈I beginning in {Xi,c}i∈I always remain within these sets.

Proof. To prove statement (1), consider, for each Hi, a controller that produces an input ui(t) ∈
{u | f(xi(t), u,D) ⊆ Xi,c} and the triggering action τi(t) = ϵ for all time t for which xi(t) ∈
Xi,c. With the triggering action τi(t) = ϵ, the controller γi trivially satisfies the definition of ρ̂-
responsibility. Also, Xi,c being a robust controlled invariant set guarantees ui(t) exists whenever
xi(t) ∈ Xi,c and with this ui(t) the controller satisfies (7.4).

To show statement (2), we use induction on time. In the base case (t = 0), by assumption, all
agents satisfy xi(0) ∈ Xi,c. Assume at time t = k, each agent’s state xi(k) is in its corresponding
set Xi,c. The controller γi either produces (i) τi(k) = ϵ or (ii) τi(k) ̸= ϵ.

First, consider case (i). Since controller γi renders Hi self-safe, u′
i(k) ∈ Ui produced by it

satisfies (7.4). With this choice of u′
i(k), there are two possibilities for state evolution. If ρi(k) = ∅,

the state xi evolves with the first line of Eq. (7.1c) and we have xi(k+1) ∈ Xi,c by (7.4). If ρi(k) ̸=
∅, state xi evolves with the second line of Eq. (7.1c), that is, xi(k+1) ∈ Ri(k, xi(k), u

′
i(k), ρi(k)).

Let j ∈ ρi(k) ∈ ρ̂
(j)
i (k). By Assumption 2, τj(k) ̸= ϵ. By agent j being ρ̂(j)-responsible with

τj(k) ̸= ϵ, for any S ∈ ρ̂
(j)
i (k) with j ∈ S, and, in particular for S = ρi(k), the first line of (7.5)

is satisfied. Since Ri(k, xi(k), u
′
i(k), ρi(k)) ⊆ Ri(k, xi(k),Ui, ρi(k)) and j ∈ ρi(k) was arbitrary,

xi(k + 1) ∈ Xi,c follows.
Now, consider case (ii). By assumption, the controller γi produces τ ∗i (k) ̸= ϵ and u∗

i (k) such
that both conditions in (7.5) and condition (7.4) are satisfied. Then, if ρi(k) = ∅, the state xi

103

evolves with the first line of Eq. (7.1c) and we have xi(k + 1) ∈ Xi,c by (7.4). If ρi(k) ̸= ∅,
state xi evolves with the second line of Eq. (7.1c), that is, xi(k + 1) ∈ Ri(k, xi(k), u

∗
i (k), ρi(k)).

Let j ∈ ρi(k) ∈ ρ̂
(j)
i (k). If j ̸= i, the reasoning in case (i) above holds. If j = i ∈ ρi(k), by

assumption, u∗
i (k) also satisfies the second line of (7.5) for any S ∈ ρ̂

(j)
i (k) with i ∈ S, and in

particular for S = ρi(k). Therefore, xi(k + 1) ∈ Ri(k, xi(k), u
∗
i (k), ρi(k)) ⊆ Xi,c.

This theorem essentially says for ITHA, existence of controlled invariant sets for individual
dynamics is a sufficient condition for ensuring global safety. However, this is not a necessary
condition and our results do not apply to the cases where the only way to ensure safety is via
triggering. The next result relates the self-safety and responsibility conditions to “not being at
fault” as in [141] in the sense that if an agent’s control policy is self-safe and ρ̂-responsible, there
exists controllers for the remaining agents such that the overall system stays safe.

Corollary 1. Consider an inter-triggering hybrid automaton {Hi}i∈I , an accompanying collec-

tion of sets {Xi,c}i∈I that are robustly controlled invariant for respective Σi’s in their respective

safe sets {Xi,safe}i∈I and a collection {ρ̂(i)}i∈I of resolution over-approximations. If some subset

{Hj}j∈I′ with I ′ ⊂ I of agents have controllers γj which are both self-safe and ρ̂(j)-responsible

on the sets {Xi,c}i∈I , then there exists controllers γi for all of the other agents {Hi}i∈I\I′ such that

the state trajectories corresponding to any {γi}i∈I-controlled execution of {Hi}i∈I beginning in

{Xi,c}i∈I always remain within these sets.

Proof. For each i ∈ I \ I ′, consider the controller γi that produces an input ui(t) ∈
{u | f(xi(t), u,D) ⊆ Xi,c}, which exists by Xi,c being robust controlled invariant, and trigger-
ing action τi(t) = ϵ for all time t for which xi(t) ∈ Xi,c. As shown in the proof of Theorem 5
statement (1), such γi is self-safe and ρ̂(i)-responsible on Xi,c. Since γj for j ∈ I ′ are given to be
self-safe and ρ̂(j)-responsible on Xj,c, with the above choice of controllers for agents in I \ I ′, all
the controllers are self-safe and ρ̂-responsible, which by statement (2) of Theorem 5 ensures safety
of the executions.

One can try to verify self-safety and responsibility for given sets {Xi,c}i∈I , controllers γi and
resolution over approximations ρ̂. Conditions (7.4) and (7.5) can also be used to synthesize con-
trollers that render an ITHA self-safe and ρ̂-responsible or to supervise existing controllers at
run-time. The latter two are the use cases we demonstrate in Section 7.4 using robust controlled
invariant sets for {Xi,c}i∈I . Given ρ̂, the basic idea is to construct the set of all triggering actions
and control inputs that together satisfy conditions (7.4) and (7.5). This set is always non-empty
when {Xi,c}i∈I are robust controlled invariant sets and it can be constructed at run-time. Then, for
synthesis, a pair (uj, τj) is picked from this set and for supervision, we check if the controller’s
uj, τj is in this set or not. A few comments are in order as to what information, in general, is

104

needed to construct this set, which also prescribes what observations should be included in Yj to
implement a controller γj constructed this way. In general, the states of all agents i, for which j

appears in the sets in ρ̂i(t) should be included in Yj . However, we note that the reset maps together
with the collection {Xi,c}i∈I of sets in practice have more structure that can simplify checking for
ρ̂-reponsibility or the amount of observations needed. For instance, for the processor example,
for all S ⊆ I, Ri(·, ·, ·, S) ⊆ Xi,c implies for all S ′ with |S ′| ≤ |S|, Ri(·, ·, ·, S ′) ⊆ Xi,c. In
words, if the processor i is safe when recruited by a number of other processors, it will be safe
when recruited by a smaller number of processors. This implies that it is enough to check the
condition (7.5) only for the largest cardinality S containing j instead of all such sets. Similarly,
for the highway example, for all S ⊆ I, there is an S∗

t,i ⊆ S such that Ri(t, ·, ·, S∗
t,i) ⊆ Xi,c im-

plies Ri(t, ·, ·, S̃) ⊆ Xi,c for all non-empty S̃ ⊆ S. This is because there is a “worst-case” lane
switching leading to a “worst-case” reset. In a sense, it does not matter what switching actions an
arbitrary agent takes; only agents close to agent j matter. Thus, an ego vehicle can reason over
the set of agents switching lanes nearest to itself while still being able to guarantee safety. It is
also worth remarking that when either Ri or Xi,c is not known exactly, an over-approximation of
Ri and an under-approximation of Xi,c can be used in (7.5) while still guaranteeing overall safety
of the ITHA per Theorem 5. Moreover, as discussed in the next section, ρ̂(i) can be constructed on
the fly, meaning ρ̂(i) is only known up to ρ̂(i)(t) at a given time t but this is enough to construct a
controller that is self-safe and ρ̂(i)-responsible at time t.

7.3.3 Finding Resolution Over-Approximations

Both complexity and conservativeness can be exacerbated if the over-approximation ρ̂(i) is “far”
from the true ρ. The task of identifying proper over-approximations of ρ is thus a vitally important
one. Insights into the structure of the problem can be used to generate good over-approximations.

We start this section with a relatively easy to compute, yet possibly conservative, over-
approximation. Then, we define an order between agents through which they can communicate and
substantially reduce conservatism. Along the way, we also discuss how these over-approximations
look for our running examples.

7.3.3.1 Trivial Over-Approximations:

If we assume each agent knows the resolution function ρ, a trivial over-approximation of the res-
olution function can be locally computed at each time step by considering every possible choice
of triggering inputs for all other agents. In math, agent i computes the jth component of a trivial
over-approximation ρ

(i)
j as:

105

ρ̂
(i)
j (t) = ρ̂

(i)
j (t, τi(t)) ={

ρ′ ∈ 2I

∣∣∣∣∣ ∃τk ∈ Tk ∀k ∈ I \ {j} :ρ′ = ρj(t, τ1, . . . , τi(t), . . . , τ|I|)

}
(7.6)

It can be easily shown that ρ̂(i), components of which are constructed as above is an over-
approximation of ρ.

Example 6 (Cont’d Example 4). For the server farm in Fig. 2.1, we revisit the case where τ2(t) = ϵ

and τ4(t) = {1, 6}, which leads to ρ1(t) = {4}, regardless of the triggering actions of the remain-

ing agents. Using the trivial over-approximation, processor 1 has ρ̂(1)1 (t) = {∅, {2}, {4}, {2, 4}},
processor 2 has ρ̂

(2)
1 (t) = {∅, {4}} and processor 4 has ρ̂

(4)
1 (t) = {{4}, {2, 4}}. Note that no

estimates depend on τ1(t), as agent 1 cannot recruit itself.

Example 7 (Cont’d Example 5). Consider the trivial over-approximation from the perspective of

the ego agent, in the case where τE(t) = ϵ: the only possible resets depend on if L1 does or does not

trigger a reset on E; that is, ρ̂(E)
E (t) = {∅, {L1}}. If instead τE(t) = left, it is more complicated:

ρ̂
(E)
E (t) = {{E}, {E,L3}, {E,L1}}. The first case occurs if neither L1 nor L3 changes to the

center lane simultaneously, the second case occurs if L3 changes to the center lane, regardless of

the triggering action of L1, and the last case occurs if L1 makes a lane change and L3 does not.

7.3.3.2 Ordered Actions

In some situations, agents in an inter-triggering hybrid automaton {Hi}i∈I can communicate their
planned actions with one another. If such communication is done in an “orderly” manner, it can
allow agents to obtain much refined over-approximations as they no longer need to consider all
possible actions of the other agents.

We again assume each agent knows the resolution function ρ. Moreover, we assume at each
time that there is a total order ⪰t among the agents that all agents know and use to communicate
their planned triggering inputs.2

Given such an order, we propose Algorithm 1 for each agent to construct their resolution over-
approximation at each time t. With abuse of notation and without loss of generality, we assume
that the automaton {Hi}i∈I is (re)ordered/(re)indexed (by keeping track of their associated over-
estimates computed so far) at each time t so that {Hi}i∈I = {H1,H2, · · · ,H|I|} and the index of
each agent represents its ranking according to ⪰t. Then, Algorithm 1 is called starting with H1 to
compute resolution over-approximations ρ̂(1) and to choose a triggering action τ1(t) for which a

2The assumption of ⪰t being a total order can be relaxed. In particular, agents can still get an over-approximation
for a class of partial orders⪰t for which the Hasse diagram of the partially ordered set ({Hi}i∈I ,⪰t) is a rooted forest
at each time, i.e., an agent does not receive information from two incomparable agents at a given time.

106

self-safe and ρ̂(1)-responsible control input u1(t) exists. Then, τ1(t) is shared with the next agent
and agent H2 calls the algorithm with {τ1(t)}, and so on, until all agents compute their triggering
actions for time t. Then these actions are executed and time progresses.

Algorithm 1: Resolution over-approximation construction with ordered actions
Result: ρ̂(j)(t, τj), τj(t)
Input:Hj , {τi(t)}j−1

i=1 , {xi(t)}i∈I
1 T̃j ← ∅
2 for τj ∈ Tj do
3 ρ̂(j)(t, τj)← ∅
4 for (τj+1, · · · , τ|I|) ∈ Tj+1 × · · · × T|I| do
5 S ← ρ(t, τ1(t), τ2(t), · · · , τj−1(t), τj, · · · , τ|I|)
6 if ∀uj ∈ Uj, Rj(t, xj(t), uj, S) ⊈ Xj,c then
7 continue;
8 end
9 if ∃i ̸= j s.t. Ri(t, xi(t),Ui, S) ⊈ Xi,c then

10 continue;
11 end
12 ρ̂(j)(t, τj)← ρ̂(j)(τj) ∪ {S}
13 T̃j ← T̃j ∪ {τj};
14 end
15 end
16 τj(t) ∈ T̃j

This scheme, and particularly the method for constructing ρ̂ = {ρ̂i}i∈I can be shown to produce
an over-approximation.

Lemma 10. Calling Algorithm 1 at each time step according to order ⪰t produces functions ρ̂(j),

each of which is an over-approximation of ρ at every time step.

Proof. Note that ρ(t) = {ρi(t, τ1(t), τ2(t), · · · , τ|I|(t))}i∈I . Thus, when {τi(t)}i∈I is completely
known, we explicitly know ρ(t). At the |I|th call of Algorithm 1 at time t, after τ|I|(t) is chosen
then {τi(t)}i∈I is completely known. This indicates that ρ(t) ∈ ρ̂(|I|)(t) for all t.

Now, consider an arbitrary call k of the Algorithm 1 at time t. By definition, ρ̂(k)i (t) contains all
resolutions ρi(t, τ1(t), τ2(t), · · · , τk−1(t), τ

′
k, τ

′
k+1, · · · , τ ′|I|) where τ ′k, τ

′
k+1, · · · are arbitrarily cho-

sen. Similarly, ρ̂(k−1)
i contains all resolutions ρi(t, τ1(t), τ2(t), · · · , τk−2(t), τ

′
k−1, τ

′
k, τ

′
k+1, · · · , τ ′|I|)

where τ ′k−1, τ
′
k, · · · are arbitrarily chosen. By observation one can see that ρ̂(k−1)

i ⊇ ρ̂
(k)
i . There-

fore, by induction ρi(t) ∈ ρ̂
(k)
i for any k and any i. Therefore, the functions ρ̂(j) produced by

Algorithm 1 are an over-approximation of ρ at every time step.

107

Example 8 (Order in Highway Example). In the highway example, one can assume that any ve-

hicle (e.g. vehicle E in Fig. 7.2) on the highway sees the actions of the vehicles in front of it (or

on a slower lane when two agents are aligned) and can use those to inform its own lane change

decisions. In this way, a time-varying ordering is implemented where Hi ⪰t Hj if and only if Hi

is in front ofHj or they are aligned andHj is on a slower lane compared toHi. This gives a total

order across agents at each time t.

For example, in Fig. 7.2 the ordering isHL1 ⪰ HL3 ⪰ HE ⪰ HF2 . This choice is motivated by

the intuition that the ego vehicleHE is behind vehiclesHL1 andHL3 , so it can see their actions. As

concrete examples of what Algorithm 1 outputs in this case, if τE(t) = ϵ, then ρ̂
(E)
E (t) = {L1} when

τL1(t) ̸= ϵ and ρ̂
(E)
E (t) = ∅ otherwise; that is, ρ̂(E)

E (t) is not conservative, as it will observe the

triggering action of L1. Similarly, if τE(t) = left, ρ̂(E)
E (t) = {ρE(t)}, since E sees the triggering

actions of both L3 and L1 and thus there is no conservativeness.

7.4 Experiments

We evaluate the flexibility and applicability of ITHA by using it to perform single-agent control in
the highway driving scenario (Section 7.4.1) and multi-agent control in the parallel processing sce-
nario (Section 7.4.2). Finally, we evaluate the conservativeness of the ITHA-based responsibility-
sensitive safety rules on a real highway driving data-set (Section 7.4.3). Our software implemen-
tation is published at [1].

7.4.1 Single-agent control: highway driving

We demonstrate ITHA on the highway driving scenario, as described in Example 5, where only the
ego vehicle is controlled and seeks to remain safe and responsible with respect to the uncontrolled
vehicles. The ego vehicle E seeks to track a nominal velocity vnom = 15m/s, formally solving the
following receding horizon control problem at each time-step:

108

min
xE ,uE ,
τE(t0)

t0+H∑
t=t0+1

∥v(t)− vnom∥22

s.t. xE(t+ 1) = fE(xE(t), uE(t), d̃(t)), t = t0 + 2, . . . ,

t0 +H − 1

xE(t0 + 1) ∈ XE,c

xE(t0 + 1) = fE(xE(t0), uE(t0), d̃(t0)), if τE(t0) = ϵ

xE(t0 + 1) = Rl
E(t0, xE(t0), uE(t0),

⋃
{ρ̂j(t0)}), if τE(t0) = l

Rl
j(t0, xj(t0), uj(t0),

⋃
{ρ̂j(t0)}) ∈ Xj,c,

∀uj(t0) ∈ Uj , ∀j ∈ ρ̂−E(t0), if τE(t0) = l

xE(t0 + 1) = Rr
E(t0, xE(t0), uE(t0),

⋃
{ρ̂j(t0)}), if τE(t0) = r

Rr
j(t0, xj(t0), uj(t0),

⋃
{ρ̂j(t0)}) ∈ Xj,c,

∀uj(t0) ∈ Uj , ∀j ∈ ρ̂−E(t0), if τE(t0) = r

(7.7)

and executing uE(t0), where the prediction horizon H = 25, the predicted disturbance d̃(t) = 0

if t > t0 and d̃(t) = −10 if t = t0, and the continuous dynamics fE(·, ·, ·) are as in (7.3), where
∆t = 0.1. Furthermore, Ui = [−10, 10] for all agents i, and we define ρ̂−E(t) = {i ∈ I | ∃j ∈
ρ̂i(t), j ∩ {E} ≠ ∅} as an over-approximation of the set of all agents that E can trigger at time t.
We will shortly describe the specific ρ̂ that we use in our experiments. Finally, we abuse notation
to define Rl

j(·, ·, ·, ·) and Rr
j(·, ·, ·, ·) as functions which output the reset state upon making a left

and right lane change, respectively.
To interpret (7.7), we note that the first constraint enforces the continuous dynamics from the

second timestep onwards, and the second constraint enforces self-safety. The third constraint en-
forces the continuous dynamics at the first timestep if no triggering action is taken, while the fourth
and sixth constraints enforce an appropriate state reset if the ego agent performs a left or right lane
change, respectively. Finally, the fifth and seventh constraints enforce that all agents that are trig-
gered by the ego vehicle’s lane change action can remain safe by applying any control input.

Note that (7.7) can be represented as a mixed integer quadratic program, where τE(t0) ∈
{ϵ, left, right} can be modeled with an integer decision variable z ∈ {0, 1, 2} used within a big-M
formulation [24] to determine the lane change choice. To improve performance, (7.7) only seeks
to enforce self-safety and responsibility at the first time-step (the system remains safe as only the
input from first time-step is executed; hence, only safe actions are applied).

109

The uncontrolled vehicles are simulated using the Intelligent Driver Model (IDM) [154]:

xi(t+ 1) = xi(t) + ∆tvi(t)

vi(t+ 1) = vi(t) + ∆ta

(
1−

(
vi(t)

ṽi

)δ

−(
s0 + vi(t)TH + vi(t)(vi(t)− vlead

i (t))

2
√
ab

)2) (7.8)

with parameters δ = 4, s0 = 5, TH = 1.5, a = b = 10 and randomly sampled nominal velocities
ṽi. Here, vlead

i (t) refers to the velocity of agent i’s lead car. We execute for 500 time-steps, solving
(7.7) at each time-step; see Fig. 7.4 for a visualization of an example execution.

To illustrate the impact of different over-approximations of ρ on conservativeness, we compare
control performance under these ρ̂:

(A) The trivial over-approximation (7.6)

(B) The ordered over-approximation described in Algorithm 1, with the time-varying ordering
as described in Example 8

A video showing the behavior of the ρ̂-responsible ego vehicle when using the two different over-
approximations is available here: https://youtu.be/a5IULWQYVzM. Under over-approximation
(A), the ego vehicle travels 351.9 meters, while it travels 415.3 meters under over-approximation
(B), averaged over 25 random initializations of the uncontrolled vehicles. In all simulations for
both over-approximations, we did not experience any unsafe behavior, as guaranteed by the theory.
We note that the performance improvement of the second over-approximation is a result of it being
less conservative than the first. For instance, consider the example in Fig. 7.4. The simulation
remains the same for both over-approximations up until time t = 86. At time t = 87, the ego
agent is unable to make an advantageous left lane change to lane 3 under over-approximation (A),
because if the car in lane 4 also changes to lane 3 simultaneously, it would lead to a safety violation.
However, under over-approximation (B), the ego agent can safely make that lane change because
the ordering implies that the car in lane 4 observes and should yield to the triggering action of the
ego vehicle. A similar event occurs at time t = 201: under (A), the ego vehicle cannot make an
advantageous switch to lane 4, because if the car in lane 5 is to simultaneously switch to lane 4, it
would result in safety violations. By the end, the ego vehicle travels 161 meters further under (B)
than under (A) (Fig. 7.4, bottom).

Finally, we note that while (B) outperforms (A) on average, (A) can still possibly outperform
(B) for specific assignments of the uncontrolled vehicles. This occurs because (7.7) is restricted to
a one-step plan for triggering actions, so the ego vehicle can make extra lane changes under (B)

110

https://youtu.be/a5IULWQYVzM

390 395 400 405 410 415 420 425
1
2
3
4
5

550 555 560 565 570 575 580 585
1
2
3
4
5

145 150 155 160 165 170 175 180
1
2
3
4
5

170 175 180 185 190 195 200 205
1
2
3
4
5

75 80 85 90 95 100 105 110
1
2
3
4
5

75 80 85 90 95 100 105 110
1
2
3
4
5

390 395 400 405 410 415 420 425
1
2
3
4
5

550 555 560 565 570 575 580 585
1
2
3
4
5

145 150 155 160 165 170 175 180
1
2
3
4
5

170 175 180 185 190 195 200 205
1
2
3
4
5

75 80 85 90 95 100 105 110
1
2
3
4
5

75 80 85 90 95 100 105 110
1
2
3
4
5

Figure 7.4: Highway driving example. Red: ego vehicle. Blue: uncontrolled vehicles. Arrow
magnitudes are proportional to agent velocity. Top row: the ego vehicle can make an advantageous
change to lane 3 under (B), but not under (A) due to a hypothetical simultaneous lane change from
the lane 4 agent to lane 3. Middle row: the ego vehicle cannot make an advantageous lane change
to lane 4 under (A) due to a hypothetical simultaneous lane change from the lane 5 agent to lane
4. Bottom row: At the end of the simulation, there is a large performance gap between using over-
estimates (A) and (B).

that can cause it to get trapped behind a slow car without realizing that it can free itself using a long
sequence of lane changes; planning triggering actions over a longer horizon would aid in escaping
from these “local optima”.

Overall, this experiment suggests we can use ITHA-based controllers to control an agent in a
multi-agent environment with safety guarantees under limited communication, and that conserva-
tiveness of ρ̂ can affect control performance.

7.4.2 Multi-agent control: parallel processors

We demonstrate ITHA on the parallel processor scenario, as decribed in Example 4, where we
control all agents (processors). Our task is to maximize the number of accepted jobs over a finite
horizon. At each time-step, we indirectly achieve this in a decentralized, receding-horizon fashion
by computing control inputs and triggering inputs individually for each agent, which greedily
minimize the number of remaining jobs for that agent. Formally, for each agent i, we solve the
following integer program at each time-step t:

111

Avg. no. accepted jobs Avg. safety violations
ρ estimate (A) 268.6 0
ρ estimate (B) 262.2 147.64
ρ estimate (C) 302.72 0

Table 7.1: Parallel processor statistics, averaged over 25 runs.

min
ui(t),τi(t)

xi(t+ 1)

s.t. xi(t+ 1) = xi(t)− ui(t) + di(t)−
∑|I|

j=1 τ
j
i (t)

xi(t+ 1) ∈ Xi,c

xi(t+ 1) ≥ 0

τ ji (t) = 0, ∀j /∈ outG(i)

Rj(t, xj(t), uj(t),
⋃
{ρ̂j(t)}) ∈ Xj,c,

∀uj(t) ∈ Uj,∀j : τ ji (t) = 1

(7.9)

where ui(t) ∈ {0, 1} and τi(t) ∈ {0, 1}|I|. Here, |I| = 10, nthrottle = 3, and noverflow = 5. We define
an over-approximation of the set of agents that agent i can trigger at time t, ρ̂−i(t), in the same
way as in the highway example. Similar to the highway example, we will compare performance
between three ρ estimates:

(A) The trivial over-approximation (7.6). Here, ρ̂i(t) = 2inG(i).

(B) An under-approximation ρbad
−j (t) ⊆ {i}, that is, when planning τi(t), agent i assumes no

other agent will recruit j.

(C) The ordered over-approximation described in Algorithm 1, with a time-invariant priority
order sorted by processor index, i.e. H1 ≻ . . . ≻ HI .

We simulate 25 runs, each over a horizon of 50 time-steps, and report the performance statistics
in Table 7.1. In each run, we generate a random undirected connectivity graph G, where an edge
between agents i and j exists if a sample uniformly drawn from [0, 1] is greater than or equal to
0.1. Disturbances di(t) are also generated randomly. Note that using the ρ estimate (A) leads to
conservative performance, since there is no communication; thus, for agent i to recruit agent j,
it must guarantee that agent j can remain safe if the rest of agent j’s neighbors also trigger it.
This overall leads to few recruitment actions, and thus many jobs are rejected. On the other hand,
(B) is less conservative, but as it is an unsafe estimate of ρ (since it is an under-approximation),
safety violations can occur, such as when many other processors recruit one processor during
the same time-step, leading to the recruited processor exceeding noverflow. As a side effect, the
average number of accepted jobs is also lower under (B) since many processors are often over the
throttle limit, limiting the number of incoming jobs. With the ordered contract, we can avoid this

112

mismanagement, more efficiently allocating jobs among the processors and preventing jobs from
being unnecessarily rejected while remaining safe.

Overall, this experiment suggests that we can also use ITHA to control multiple agents in a
decentralized fashion with safety guarantees, and that it is vital to select an appropriate ρ estimate
to ensure safety and good performance.

7.4.3 Supervision: Evaluation of ITHA on data

Several frameworks for autonomous driving have sought to supervise a performance controller
with a safety supervisor, which overrides when the performance controller may lead the system
to an unsafe state. These supervisors often use invariant sets or control barrier functions to detect
these safety violations. However, the usefulness of a safety supervisor is often dependent on its
conservativeness, i.e. it should not unnecessarily override, as the jerkiness of changing controllers
may annoy or frighten the user. To empirically demonstrate that the ITHA framework can serve
as a high-quality safety supervisor that provides rigorous safety guarantees while remaining suf-
ficiently permissive, we demonstrate that an ITHA-based supervisor achieves low override rates
when supervising on a real world highway driving data-set [82].

The HighD data-set consists of trajectories of each driver’s position with annotations, such as
the vehicle lane and vehicle class (motorcycle, truck, or car), with data recorded at six different
locations on the German Autobahn at various times of day. We use 110516 trajectories from the
HighD data-set, containing a total of around 4 × 107 (x, u, d) data-point tuples. The state, input,
and disturbance trajectories for each car in the data-set under the dynamics (7.3) (the vi, hi, vLi , and
di trajectories) are generated as follows. vi, hi, and vLi are directly provided in the HighD data-set;
we compute di via finite-differencing using the lead car velocities and ∆t = 0.04 seconds, which
is the provided time discretization of the data-set.

We hold out 20% of the data and use the remaining 80% as a “training set” to compute dis-
turbance bounds. These disturbance bounds are used to compute invariant sets which are well-
calibrated to the driving behavior observed in the data-set. Let the set of all disturbance trajectories
in the training data-set for dynamics (7.3) be denoted Ξd

.
= {ξd,i}Ni=1, where N is the number of

trajectories in the data-set. While the data-set can be noisy, we do not perform any de-noising in
this step, and instead process outliers when computing the disturbance bounds. Specifically, we
process Ξd for outliers by only keeping the data between the 0.025- and 0.975-sample quantiles
d̂0.025, d̂0.975; that is, we concatenate Ξd, sort the result in increasing order (i.e. obtain the order
statistics of Ξd, denoted Ξd,(1),Ξd,(2), . . .), and remove all disturbances belonging in the first 2.5
and last 2.5 percent of Ξd (this is possible, since d is scalar in (7.3)). Formally, we define the
y-sample quantile, y ∈ (0, 1), as d̂y = Ξd,(⌈yN⌉), where N is the number of elements in Ξd. Let

113

Case Override percentage
Self-safety 10.09%

Responsibility: Trivial ρ̂ 28.03%
Responsibility: Prioritized order ρ̂ 2.30%

Table 7.2: Override statistics for HighD data-set supervision.
this modified data-set be denoted Ξ̂d

.
= {d ∈ Ξd | d ∈ [d̂0.025, d̂0.975]}. We compute an invariant

set assuming disturbances d satisfy d ∈ D = Di = [d̂0.025, d̂0.975], and use these invariant sets
Xi,c = Cinv within an ITHA-based supervisor.

To quantify the conservativeness of using ITHA-based responsibility-sensitive safety rules to
supervise highway driving, we calculate the number of times our supervisor overrides the human
control input on the trajectories observed in the data-set. Specifically, we calculate the fraction of
datapoints in which self-safety (as defined in Definition 20) and ρ̂-responsibility (as defined in Def-
inition 22) are violated; we denote this the override rate, reported in Table 7.2. A low override rate
indicates that our supervisor will not frequently engage and is not excessively conservative, which
is desirable since there are no crashes in the data-set. As mentioned, we compare between two dif-
ferent ρ̂ over-approximations to evaluate responsibility: the first uses the trivial over-approximation
(7.6), while the second uses the ordering contract where any agent j behind agent i in the direction
of travel must yield to the triggering actions of agent i (see Example 8 for more details).

Analyzing the override percentages in Table 7.2, we observe that supervising self-safety with
ITHA results in relatively low override percentages, while the ordered contract outperforms the
trivial contract substantially. This is to be expected, since using the trivial over-approximation leads
to overrides being counted if the ego car is changing lanes and there exists another car adjacent
to the new lane with similar longitudinal position as the ego car. This is common behavior (i.e.
many cars may simultaneously be at similar longitudinal positions on the highway in different
lanes). Note that these override rates can be further improved by employing context-dependent
invariant sets generated with disturbance bounds computed on different clusters of data (contexts),
i.e. only on trajectories recorded in the fast lane, or only on trajectories recorded at rush hour.
Further investigation of the impact of context-dependence on the conservativeness of ITHA-based
supervisor rules is an interesting direction for future work.

Overall, this experiment suggests that an ITHA-based supervisor can obtain low override rates
on a real driving dataset, indicating that driving data-sets can be used to calibrate an ITHA-based
safety supervisor and that such supervisors are permissive enough to avoid excessive overrides
(10% for self-safety and 2% for an appropriate responsibility contract) and act as a useful safety
supervisor.

114

7.5 Discussion

In this section, we provide a few remarks on limitations and simple extensions of our framework:

• ITHA is appropriate in modeling systems whose individual dynamics are decoupled but have
additional triggering actions for interaction. Our self-safety and responsibility rules utilize
this structure to provide sufficient conditions for global safety. In comparison, existing com-
positional frameworks, such as [149, 101, 112, 134, 34, 138, 57, 88], that give sufficient
conditions for global safety allow agents’ dynamics to be coupled but do not allow for trig-
gering actions.

• We note that our approach can be extended to guarantee safety for settings in which individ-
ual systems may have communication delays or sensor noise by leveraging recent advances
in invariant set computation [64, 74, 170, 89] for systems with these imperfections.

• The increased complexity of our method over other responsibility-sensitive safety frame-
works for driving (i.e. [42]) can be attributed in part to analyzing “second-order” triggers,
i.e. reasoning about the set of agents which can have their feasible triggering set modified
by the triggering action of another agent. In the two-lane highway driving setting, such be-
havior does not exist (which is what is considered in most existing responsibility-sensitive
highway driving frameworks) since there are no “second-order” neighbors; however, to guar-
antee safety when there are more than two lanes of traffic, it is vital to consider second-order
behavior.

• While we show communication and ordered triggering action selection can reduce conserva-
tiveness, it can be further reduced by communicating control inputs. We assume that agents
evaluate responsibility using all inputs u that the triggered agents can apply (see Eq. (7.5));
however, if agents can communicate their state and input to the triggered agent, we can relax
this “for all inputs” condition to “there exists an input” according to a similar priority.

• Finally, we note our framework allows for priorities between agents which are not fixed
a priori and dynamic orders can be chosen to improve performance. For instance, in the
processor example, agents with the most remaining jobs can be reassigned to have higher
priority in recruiting other agents. So, there is a potential to employ distributed algorithms
to select such dynamic orders.

115

CHAPTER 8

Conclusions

In this dissertation, we’ve discussed multiple methods for correctly designing adaptive controllers
in a variety of settings.

In Chapter 3, we presented a method for designing controllers or estimators that adapt to missing
data (e.g. packet drop events) events on their sensors. When a missing data event occurs to a
dynamical system’s sensor, the sensor is not able to measure the state of the system and instead
produces a measurement that the controller recognizes as ”faulty”. This situation is important
because, although many output feedback controllers make the assumption that sensor data is always
available to the decision-maker (i.e., the controller), there are large classes of sensors for which
a measurement is not always available. Such sensors include vision-based sensors which may
occasionally lose sight of the object they are measuring or sensors which collect information over
a network with lossy channels. The loss of measurements is sometimes governed by processes
which we can prepare for a priori, which we encode into a missing data language. This missing
data language can be incorporated into a controller design problem that guarantees the system
satisfies reachability tasks (and thus any task that can be formulated with temporal logics like
LTL). We use such guarantees to prove the safety of a motion plan for drones moving through a
narrow channel as well as several other tasks in this chapter.

In Chapter 4, we presented a method for correctly designing adaptive controllers that can
achieve tasks despite some initial uncertainty about their own dynamics. The system’s dynam-
ics are incredibly important for guaranteeing that tasks get completed because they govern how
a control action at one time will guide the system closer to or further away from unsafe regions
or task regions. Guaranteeing task satisfaction has traditionally been done using the theories of
control barrier functions or contraction theory, but each of these methods requires that the control
designer identify an often complex and high-dimensional function (the control barrier function, or
the contraction metric) in order to apply them. Instead of relying on an oracle to provide such a
function, our method can identify adaptive controllers using task information only. The approach
relies on treating the reachable set of a linear system with a disturbance controller as a parameter-
ized polytope. By considering these reachable sets as parameterized polytopes, we can use bilinear

116

constraints to make guarantees about whether or not a given controller will complete a task for any
one of the unknown models in a finite set.

In Chapter 5, we presented a framework for correctly designing adaptive controllers with respect
to a temporal logic formula. Temporal logic formulas are much more commonly applied and better
understood than the parameter (the Exploration-Exploitation profile) defined in Chapter 4. The
temporal logic formulas that we considered were written in KLTL and were defined over state- and
model-based propositions. With these atomic propositions, we developed the semantics for KLTL
formulae for a class of linear system with unknown parameters. These semantics were used to
develop optimization conditions under which an adaptive controller would satisfy each part of the
grammar individually. Several elements of the grammar could be combined as well and we shared
how optimization constraints could be added to guarantee that the designed adaptive controllers
satisfied these more complex tasks as well. The method for synthesizing adaptive controllers that
guaranteed KLTL tasks were correctly achieved was then applied to two examples.

In Chapter 6, we presented a method for correctly designing adaptive controllers that can
achieve safety tasks despite some initial uncertainty about their own dynamics. The key differ-
ence between this chapter and Chapter 4 is that the tasks we are interested in are safety tasks
(so they require guarantees about all future times, not just for a finite time horizon as is done in
Chapter 4). To guarantee safety of the system for all future times, a robust control invariant set is
frequently employed. The robust control invariant set can be found for linear systems when the
model is known, however in this setting the model is not immediately known at design time. The
unknown parameters of the model are referred to as intentions in this chapter due to our choice of
motivating example (a human-driven vehicle driving next to our computer-controlled vehicle). We
combine a more conservative robust control invariant set with an intention estimation controller to
design a controller that guarantees safety when the task is started, and can later learn the intention
of the other car (and thus the model). When the model is learned, a less conservative invariant set
can be used to satisfy the safety task.

In Chapter 7, we presented a new model for hybrid systems called the inter-triggering hybrid
automaton. This model was developed as part of a team at the Özay group and is used to represent
collections of interacting agents in the world (e.g. collections as disparate as a set of cars interacting
on a highway or a set of server’s sending packets to one another). For such collections of systems, it
is difficult to verify the safety of their open-loop operation or to design closed-loop, decentralized
control policies that can guarantee their safety because most methods use restrictive notions of
safety or rely on tools that do not scale well with the number of agents in a collection. Our model
allows for the problem of verification and control design to be simplified because it (i) allows for a
less restrictive notion of safety that we call responsibility-sensitive safety and (ii) decomposes the
problem in a way that eliminates several scalability issues. Responsibility-sensitive safety encodes

117

a notion of responsibility into safety which enforces that agents act in a way that doesn’t directly
cause others to be unsafe, but importantly does not require that agents reason about all possible
control actions of other agents. The problem is decomposed so that each agent in the collection is
only required to check the safety of its own states (self-safety) and some subset of control actions
of the agents that it is responsible for (responsibility).

8.1 Future Work

In this dissertation, we successfully developed a method for synthesizing adaptive controllers that
correctly satisfy temporal logic formulas. This improvement makes it much easier to apply our
bilinear optimization framework for designing adaptive controllers to new tasks. Another im-
provement that we were interested in was improving the adaptive control tools in this work so that
they could be applied to real robotic systems. This goal was attempted but a satisfactory approach
was not completely developed in time to include in this dissertation. The two attempts towards this
end can be summarized as:

• A guaranteed reachability pipeline for an uncertain linear system like (2.5), but where the
set of feasible parameters Θ contains an infinite number of elements but is still compact, and

• An adaptive motion planning pipeline for uncertain nonlinear systems in continuous-time.

The first attempted solution was determined to be a polynomial optimization and requires a deeper
understanding of semi-algebraic set containment before it can be completed. The second attempted
solution was attempted using the theory of adaptive control Lyapunov functions (aCLFs) and adap-
tive control barrier functions (aCBFs) to guarantee safety of an adaptive controller while also
achieving a reachability task. Unfortunately, generating adaptive controllers with this theory re-
lies on the discovery of suitable aCLFs or aCBFs and there is no known systematic method for
doing so. Methods for generating aCLFs and aCBFs from samples of the dynamics, previously ob-
served trajectories, or other methods will be investigated to alleviate the difficulty of finding these
functions. In addition, aCLF- and aCBF-based methods for task satisfaction require continuously
differentiable control laws but the traditional quadratic programming-based, blended aCLF- and
aCBF-based controllers do not always generate differentiable control laws. An investigation of
how to guarantee differentiability of the controller will be done to determine if this guarantee can
be made.

118

APPENDIX A

Missing Data Proofs

A.1 Proofs of Properties of Block Lower Triangular Matrices

Proof of Lemma 3

The first property is a trivial consequence of matrix addition, while the second property follows
directly from multiplication of two block lower triangular matrices. Finally, the third property can
be observed from the identity for partitioned matrix inversion of block lower triangular matrices.

Proof of Proposition 1

Let C̄0
.
= BMj(C̄

(1)) = BMj(C̄
(2)). We prove both the sufficient and necessary directions:

Sufficiency: Suppose that BMj(F
(1)) = BMj(F

(2)) = F̃ . Using the fact that C̄(i), S and F (i)

are block lower triangular (and hence, Q(i) is also block lower triangular) for i ∈ {1, 2} as well as
Lemma 3, we have:

BMj(Q
(1))

= BMj[F
(1)(I − C̄(1)SF (1))−1]

= BMj(F
(1))(BMj(I)− BMj(C̄

(1))BMj(S)BMj(F
(1)))−1

= F̃ (BMj(I)− C̄0BMj(S)F̃)−1

= BMj(F
(2))(BMj(I)− BMj(C̄

(2))BMj(S)BMj(F
(2)))−1

= BMj[F
(2)(I − C̄(2)SF (2))−1]

= BMj(Q
(2)).

Necessity: Suppose that BMj(Q
(1)) = BMj(Q

(2)) = Q̃. First, we note the (strictly) block lower
triangular properties of C̄(i), S, Q(i) and F (i). It was shown in [147] that we can solve for F (i), for
i ∈ {1, 2} from (2.2) as:

F (i) = (I +Q(i)C̄(i)S)−1Q(i).

119

Then, using the fact that C̄(i), S, Q(i) and F (i) are block lower triangular for i ∈ {1, 2} and Lemma
3, we find that:

BMj(F
(1))

= BMj[(I +Q(1)C̄(1)S)−1Q(1)]

= (BMj(I) + BMj(Q
(1))BMj(C̄

(1))BMj(S))
−1BMj(Q

(1))

= (BMj(I) + Q̃C̄0BMj(S))
−1Q̃

= (BMj(I) + BMj(Q
(2))BMj(C̄

(2))BMj(S))
−1BMj(Q

(2))

= BMj[(I +Q(2)C̄(2)S)−1Q(2)]

= BMj(F
(2)).

Proof of Proposition 2

The proof is similar to Proposition 1. First, consider the forward direction of the proof (suffi-
ciency):

r
(1)
1:jn = [(I +Q(1)C̄(1)S)u

(1)
0]1:jn

= BMj(I +Q(1)C̄(1)S)[u
(1)
0]1:jn

= (BMj(I) + BMj(Q
(1))BMj(C̄

(1))BMj(S))[u
(1)
0]1:jn

= (BMj(I) + BMj(Q
(2))BMj(C̄

(2))BMj(S))[u
(2)
0]1:jn

= BMj(I +Q(2)C̄(2)S)[u
(2)
0]1:jn

= r
(2)
1:jn,

where we again applied Lemma 3 and the fact that C̄(i), S and Q(i) are block lower triangular for
i ∈ {1, 2}. The proof of the opposite direction (necessity) is similar.

A.2 Matrices and Sets for Estimator and Controller Synthesis
Problems

For completeness’ sake, we provide the corresponding matrices and sets for the estimator and
controller synthesis problems in this section.

In the context of estimator synthesis for the system with missing data in (3.1) using the estimator
structure in (3.2), the state estimation error system for the state estimation error given by ξ(t)

.
=

x(t)− x̂(t) can be found to be of the form in (3.3) with Bξ
.
= I , uξ(t)

.
= ue(t), kξ

.
= 0, Uξ

.
= Rm,

and the transformed output yξ(t)
.
= y(t) − Cx̂(t) when q(t) = 1 and yξ(t)

.
= ∅ when q(t) = 0,

where x̂(t) is known signal that can computed using (3.2).
On the other hand, the controller synthesis problem for the system with missing data in (3.1)

is one with the system dynamics of the form in (3.3) with Bξ
.
= B, kξ

.
= k, uξ(t)

.
= u(t),

120

yξ(t)
.
= y(t) and ξ(t)

.
= x(t), as well as Uξ

.
= U . Moreover, for the tracking control problem

with a given desired trajectory xd(t0), xd(t0 + 1), . . . , xd(t0 + T) and associated desired inputs
ud(t0), ud(t0 + 1), . . . , ud(t0 + T − 1), the corresponding system dynamics takes the form in (3.3)
with Bξ

.
= B, kξ

.
= 0, uξ(t)

.
= u(t) − ud(t), yξ(t)

.
= y(t) − Cxd(t) and ξ(t)

.
= x(t) − xd(t), as

well as Uξ
.
= {uξ(t) ∈ Rm | uξ(t) + ud(t) ∈ U}.

A.3 Proofs of Main Results

Proof of Theorem 1

This follows directly from Propositions 1 and 2 as well as the invertibility of the mappings (2.2)
and (2.3).

Proof of Theorem 2

For a given prefix-based feedback law {(F (i), u
(i)
0)}|L|i=1, the transformed state trajectory ξ(i) =

[ξ(i)(t0)
⊺, . . . , ξ(i)(t0 + T)⊺]⊺ under the i-th missing data pattern can be written as a nonlinear

function of {(F (i), u
(i)
0)}|L|i=1 just by plugging in the transformed input term (3.7). After applying

a change of variables via the mapping in Theorem 1, we can express ξ(i) as a linear function of
{(Q(i), r(i))}|L|i=1 ∈ Q(L) as in (3.15). Since the equalized recovery condition can also be written
as linear constraints in ξ(i) that should hold for all initial states satisfying M1 bound and for all
possible noise values, problem (3.14) is a robust linear program, whose feasibility is equivalent
to the existence of the desired estimator/controller. Finally, the gains of the prefix-based feedback
law are obtained by applying the inverse of the mapping in Theorem 1.

Proof of Theorem 3

In this proof, we will convert the semi-infinite constraints in Theorem 2 into linear constraints by
leveraging the robust optimization approach in [20, 23]. Since we will repeat the same robustifica-
tion process for each i ∈ [1, |L|] in (3.14), we will drop the dependence on i in the following.

We first rewrite the infinity norm expressions in (3.14) as linear inequalities and substitute the

121

expression for ξ in terms of w, v, ξ(t0) and r using the equations in Theorem 2, as follows:

∥ξ∥ ≤M2 ⇒

[
I

−I

]
η =

[
I

−I

]
(G

 w

v

ξ(t0)

+ Sr + (I + SQC̄)Hf̃) ≤M21, (A.1)

∥RT ξ∥ ≤M1 ⇒

[
I

−I

]
RTη =

[
I

−I

]
RT (G

 w

v

ξ(t0)

+ Sr + (I + SQC̄)Hf̃) ≤M11,

(A.2)

∥uξ + ud∥ ≤ ηu ⇒

[
I

−I

]
(uξ + ud) =

[
I

−I

]
(G̃

 w

v

ξ(t0)

+ r +QC̄Hf̃ + ud) ≤ ηu1, (A.3)

∥w∥ ≤ ηw,

∥v∥ ≤ ηv,

∥ξ(t0)∥ ≤M1,

⇒



I 0 0

−I 0 0

0 I 0

0 −I 0

0 0 I

0 0 −I



 w

v

ξ(t0)

 ≤
 ηw1ηv1

M11

 , (A.4)

where G
.
=
[
(I + SQC̄)H SQN (I + SQC̄)J

]
, G̃

.
=
[
QC̄H QN QC̄J

]
and RT

.
=[

0n×nT In

]
. Then, leveraging the robust optimization approach in [20, 23], we can convert the

constraints of (A.1) and (A.2) “for all disturbances w, v and ξ(t0)”, i.e., subject to (A.4), into linear
constraints with dual matrix variables Π1, Π2 and Π3 for each i ∈ [1, |L|].

A.4 Detectability Related Proofs

Proof of Proposition 4

In this proof, we use an unobservable subspace argument to show that for initial conditions starting
in two important subsets of the state space, equalized recovery parameters can be found and then by
a direct sum argument we can conclude that such parameters can be found for any initial condition
in the state space of a detectable system.

First, by assumption, any initial condition in the unobservable subspace x0 ∈ U0(q) asymptoti-
cally converges to zero. Convergence to zero implies that there exists a time t(1) such that the zero
estimator (the estimator that always returns the zero vector) satisfies equalized recovery for time

122

horizon t(1), any recovery level M1, and a finite intermediate level M2.
Next, note that if there exists a time t′ such that y(t′, x0, q) (the output at time t′ caused by initial

condition x0) is different from the output of any other initial condition, then equalized recovery is
feasible. The estimator that achieves equalized recovery has time horizon t′, any recovery level,
and a finite intermediate level that depends on the dynamics. By definition, all initial conditions
x0 in the orthogonal complement of the unobservable subspace x0 ∈ U0(q)⊥ of (3.23) have such a
time t(2) or else contradict the definition of U0(q)⊥.

Finally, because any initial condition must be in the direct sum of U0(q) and U0(q)⊥, the proof
is complete. For any initial condition x0 = x′

0 + x′′
0 where x′

0 ∈ U0(q) and x′′
0 ∈ U0(q)⊥, equalized

recovery is satisfied with time horizon t(1) + t(2), a finite intermediate level, and a recovery level
dependent on the choice of t(1) and t(2).

Proof of Proposition 5

We show that equalized recovery is indeed a superset of detectability by providing a simple exam-
ple. Consider the following scalar linear system:

x(t+ 1) = x(t),

y(t) = 0.

It is trivial to see that this system does not satisfy detectability according to Definition 8 because
x(t, x0, q) for any x0 ̸= 0 does not tend to zero. However, equalized recovery is trivially satisfied
for any T , M1 and M2 ≥M1.

123

APPENDIX B

Defining the Resets and Resolution Function for the
Highway Example

In order to define the reset map and the resolution function for the highway example, we need to
introduce global states in a global coordinate system for the overall system. Both the reset map
and the resolution function can be expressed as time-invariant functions of these global states. On
the other hand, we model the states of individual vehicles in ITHA in some local coordinates in
(7.3), Global-state dependent reset maps and resolution functions can be converted to time-varying
variants on the individual states. Since the self-safety and responsibility conditions are defined
for time-varying reset maps and resolution functions that depend on individual states, our safety
results are still applicable with this conversion. This section clarifies what information each vehicle
would need at a given time to compute ρ̂ and to comply with condition (7.5).

Let agent i’s global state be defined as x̄i =
[
vi pi ℓi

]⊤
∈ X̄a = [0, vmax] × [0,∞) ×

{1, ..., nℓ} where ℓi ∈ {1, ..., nℓ} is the current lane’s number, pi is the longitudinal position in the
current lane, and vi is the current longitudinal velocity in the direction of the current lane (i.e. the
same value in (7.3)). Here we take the state spaces X̄a of the vehicles to be identical for simplicity.
Also, by convention, we take the rightmost lane to have value 1. Let {x̄i}|I|i=1 be the collection of
all agents’ global states, with X̄g ≜ X̄ |I|

a denoting this state space, and X̄S denoting the restriction
of this space to agents S ⊂ I.

The dynamics of the global state can be written as:

x̄i(t+ 1) =

 1 0 0

∆t 1 0

0 0 1

 x̄i(t) +

∆t

0

0

ui(t) +

00
1

uτi(t),

≜ f̄i(x̄i(t), ui(t), uτi(t)),

(B.1)

124

where ui is the acceleration, i.e., the same control input in the ITHA representation, and

uτi(t) =


1 τi(t) = left,

0 τi(t) = stay,

−1 τi(t) = right.

Note that it is more intuitive to define control invariant sets over the local state space defined
in (7.3) rather than in the global state space of the global coordinates since safety depends only
on inter-vehicle distances. Thus, local reasoning is sufficient for the proofs of this dissertation.
However, to define the resets, local states are not sufficient.

Let us define the following nearest leader of agent i operator Li : X̄a×
⋃

S⊂I X̄S → I ∪ ∅. It is
defined by the following simple optimization:

Li(x̄i, {x̄j}j∈S) = arg min
j∈S\{i}

|pi − pj|

subject to pi ≤ pj

ℓj = ℓi

(B.2)

In words, it finds the closest lead car within the set S to agent i on the same lane with it. Assuming
that two cars cannot occupy the same point on the highway (in this case, the same longitudinal
position and lane), the value of argmin will always be either a singleton or the empty set. However,
even if it is not a singleton, picking any minimizer works for the purposes of the next lemma, which
relates the global states to individual (local) ones.

Lemma 11. There exists a unique mapping from the global state {x̄i}|I|i=1 to the states {xi}|I|i=1 of

the individual vehicles in the ITHA representation.

Proof. To map the global state {x̄i}|I|i=1 to the ITHA states {xi}|I|i=1, consider the mapping for one
agentHi:

xi =




vi

∞

vmax

 Li = ∅


vi

pLi
− pi

vLi

 otherwise

(B.3)

where Li is the abbreviation of Li(x̄i, {x̄j}j∈I).

125

We define a localized version of the mapping (B.3), denoted GS : X̄S →
∏

i∈S Xi, to be the
mapping when Li is taken to be Li(x̄i, {x̄j}j∈S). We denote by GiS : X̄S → Xi the component of
GS corresponding to agentHi.

Now we will define the resolution functions ρi : X̄g × T1 × · · · × T|I| → 2I and reset maps
Ri : X̄g ×Xi × Ui × 2I → 2Xi that depend on the global quantities1. We have

ρi : ({x̄i}|I|i=1, τ1, · · · , τ|I|) 7→

{j ∈ I | τj ̸= stay, ℓj = ℓi, pj ≥ pi}∪

{j ∈ I | τj ̸= stay, ℓj + uτj = ℓi + uτi , pj + vj∆t ≥ pi + vi∆t}.

In words, the resolution function ρi maps the global state and the triggering actions to the set of
all agents that use a non-null triggering action that are on the same lane with agent i and ahead of
it and those whose triggering action will put them on the same lane with agent i ahead of it in the
next step. Then, the trivial resolution over-approximation ρ̂i(t) used in our experiments considers,
in the worst-case, all agents ahead of agent i on the same lane at time t and all agents that can be
on the same lane with agent i ahead of it at time t+ 1. However, many of these combinations S of
reset-triggering agents appearing as an output of ρ̂i(t) lead to the same reset value, as defined by:

Ri({x̄i}|I|i=1, xi, ui, S) = GiS′({f̄j(x̄j, uj, uτj)}j∈S′),

where S ′ = {j ∈ I | ℓj + uτj = ℓi + uτi , pj + vj∆t ≥ pi + vi∆t}. By construction, τj = stay for
j ∈ S ′ \ S. Therefore, the triggering actions of the agents in S ′ ∩ S is sufficient for estimating Ri

at time t, in addition to the estimates of other arguments. Note that the first set in the ρi definition
does not directly seem to contribute to the reset map but it captures the agents leaving in front
of agent i, which in turn affect who the lead car will be in the next step. At run-time, the local
controller γi does not need the knowledge of the entire global states but needs to know the lanes
and relative positions (pi(t) − pj(t)) and relative velocities (vi(t) − vj(t)) of agents j for which
i ∈ ρ̂j(t).

1To be precise, the actual value the state is reset to, depends on the triggering actions, states, and inputs of agents
in ρi rather than the agents’ indices as mentioned in footnote 1.

126

APPENDIX C

The Difference between KLTL and LTL

In this appendix, we discuss the difference between KLTL and LTL. To do this, we introduce a
Transition System with partial observability and analyze how the KLTL semantics are interpreted
over this.

C.1 Transition Systems with Partially Visible States

Consider the following system:

Definition 23 (Partially Observed Transition System). A transition system with outputs TS is a

tuple (S,Act,→, I, AP, L, Y,H) where

• S is a set of states,

• Act is a set of actions,

• →⊆ S × Act× S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions,

• L : S → 2AP is a labelling function,

• Y is a set of observable outputs, and

• H : S → 2Y is an observation function.

TS is called finite if S, Act, AP , and Y are finite.

Definition 24 (Path Fragment). A finite path fragment π̂ of TS is a finite state sequence s0s1...sn

such that si ∈ Post(si−1) for all 0 < i ≤ n where n ≥ 0. An infinite path fragment π is an infinite

state sequence s0s1s2... such that si ∈ Post(si−1) for all i > 0.

127

Definition 25. An infinite path fragment π = s0s1...sn that is initial (i.e. s0 ∈ I) will be called a

path.

Let the set of all paths for a given transition system with outputs TS be the set Paths(TS).
Importantly, we will frequently discuss the output trajectory of a transition system with outputs.

This is defined as follows:

Definition 26 (Output Trajectory). An alternating sequence of outputs and inputs y0u0y1u1y2... is

an output trajectory of a transition system with outputs TS = (S,Act,→, I, AP, L, Y,H) if and

only if there exists a path fragment π = s0s1s2... where

• yk ∈ H(sk) for all k > 0, and

• (sk, uk, sk+1) ∈→ for all k > 0.

Let the set of all output trajectories for a given transition system with outputs TS be the set
OPaths(TS).

We overload the observation function H to also operate on paths as follows. For any path
π = s0s1s2..., the observation function H : Paths(TS)→ 2OPaths(TS) is defined as

H(π) =

{
o = y0u0y1u1y2... ∈ OPaths(TS)

∣∣∣∣∣ yi ∈ H(s0) ∀i
(si, ui, si+1) ∈→ ∀i

}
.

Definition 27 (Trace). Let TS = (S,Act,→, I, AP, L, Y,H) be a transition system with out-

puts and without terminal states. The trace of the infinite path fragment π = s0s1... is defined

as trace(π) = L(s0)L(s1).... The trace of the finite path fragment π̂ = s0s1...sn is defined as

trace(π̂) = L(s0)L(s1)...L(sn).

Let the set of all traces for a given transition system with outputs TS be the set Traces(TS).

C.2 KLTL Interpretation for Partially Observed Transition
Systems

In this section, we develop a form of KLTL for the partially observed transition system in Definition
23. This form of KLTL is analagous to the definition from Chapter 5. It will use the same grammar,
but its semantics will be slightly changed.

The grammar is exactly as is presented in Definition 12. For the sake of readability, the grammar
is reproduced here:

128

Definition 28 (KLTL Grammar, Originally Definition 12). The grammar of KLTL is as follows:

φ ::= p | ¬φ | φ ∧ φ | ⃝ φ | φUφ | Kφ (C.1)

in which p ∈ AP is an atomic proposition, while⃝ and U are the “next” and “until” operators.

Formulas of the type Kφ are read as “the system knows that the formula φ holds”.

The semantics of KLTL will be similar to the one presented in Chapter 5. The things that will
change will mostly be the naming conventions of objects.

Definition 29 (KLTL Semantics for Systems With Unknown Parameters). For any path π =

s0s1s2... of a Transition System with Outputs TS and an associated output trajectory o ∈ H(π),

interpret the KLTL operators as follows:

• (π, o, i) |= p if p ∈ L(si)

• (π, o, i) |= ¬p if (π, o, i) ̸|= p

• (π, o, i) |= φ1 ∧ φ2 if (π, o, i) |= φ1 and (π, o, i) |= φ2

• (π, o, i) |=⃝φ if (π, o, i+ 1) |= φ

• (π, o, i) |= φ1Uφ2 if ∃j ≥ 0 such that (π, o, j) |= φ2 and ∀0 ≤ k < j, (π, o, k) |= φ1,

• (π, o, i) |= Kφ if for all π′ ∈ Paths(TS) s.t. π′ ∼o π, we have (π′, o, i) |= φ.

The similarity relation ∼ is defined as follows: Two traces π, π′ are similar π ∼o π
′ if and only if

o ∈ H(π) ∩H(π′).

C.3 Example 1: Eventually Learning

In this section, we consider the difference in interpretation of the following formulae:

φ1 =⃝a ∨⃝b

and
φ2 =⃝(Ka) ∨⃝(Kb).

Consider the following transition system with outputs TS1:

Example 9. TS1 = (S1, Act1,→1, I1, AP1, L1, Y1, H1) where:

• S1 = {s0, s1, s2, s′1, s′2}

129

s0

s1s2

s′1s′2

Figure C.1: An illustration of the transition system TS1. Black arrows indicate the existence of
one transition to another.

• Act1 = {α}

• →1 is defined as is shown in Fig. C.1

• I1 = {s0}

• AP1 = {a, b}

• L1 is defined as:

– L(s0) = ∅

– L(s1) = L(s′2) = {a}

– L(s′1) = L(s2) = {b}

• Y1 = {y0} and

• H1(s) = {y0} for all s ∈ S1.

Proposition 23. Example 10 satisfies φ1 but does not satisfy φ2.

Proof. The proof of this proposition can be sketched as follows. Firstly, we can show that φ1 is
satisfied by writing down all of the possible trace prefixes of the system TS1 with length three. In
this case, there are only two possible prefixes: ∅{a}{b} or ∅{b}{a}. By this brute force method,
one can show that φ1 is satisfied.

Secondly, Example 10 uses the same output for all states and so it is never possible to know
which state of the transition system (in this case s1 or s′1) we have reached.

130

One can also consider the pair of formula templates:

φ′
1 =⃝3ka ∨⃝3kb

and
φ′
2 =⃝3k(Ka) ∨⃝3k(Kb).

For any value of k, this pair of formulas will have the same.
This example shows the semantic difference between two sets of formulas, but it also shows a

fundamental limitation of LTL. LTL can not express this property with a label because the property
is a function of infinitely many other paths in the transition system (i.e. formula φ′

2 is a hyperprop-
erty). If one wanted to create a ”hack” to define such hyperproperties using LTL anyway, then they
might be able to for this example but it would involve ”expanding” the state space to include new
states using memory.

In the next section, we will discuss an example for which no clever relabelling exists which
LTL can use to satisfy a property.

C.4 Example 2: The Role of Inputs

In this section, we discuss an example that shows how KLTL can be used to express reachability
tasks that LTL can not.

The formula we are interested in is as follows:

φ3 = ♢Ka.

Consider the following transition system with outputs TS2:

Example 10. TS2 = (S2, Act2,→2, I2, AP2, L2, Y2, H2) where:

• S2 = {s0, s1, s2, s3, s4, s′1, s′2, s′3, s′4, s′′1, s′′2, s′′3, s′′4}

• Act2 = {α, β}

• →2 is defined as is shown in Fig. C.2

• I2 = {s0}

• AP2 = {a}

131

s0

s1s′′1

s2s′′2

s3s′′3

s4s′′4

s′1

s′2

s′3

s′4

s−1

Figure C.2: An illustration of the transition system TS2. The red arrows represent transitions under
the control input α only, the blue arrows represent transitions under the action β only, and the black
arrows represent possible transitions under any action in Act.

• L2 is defined as:

L2(s) =

{a} s = s′4

∅ otherwise

• Y2 = {y0} and

• H2(s) = {y0} for all s ∈ S2.

For the above system, consider three paths:

• π(1) = s0s1s2s3s
′
4(s−1)

ω,

• π(2) = s0s
′
1s

′
2s

′
3s

′
4(s−1)

ω, and

• π(3) = s0s
′′
1s

′′
2s

′′
3s

′
4(s−1)

ω.

132

Note that all three paths satisfy the temporal logic formula φ′
3 = ♢a (or φ′′

3 =⃝4a).
But, let us consider whether or not each path can satisfy the formula φ3. To do this, we need to

have knowledge of the output trajectories. Some example output trajectories for each path are:

• H(π(1)) contains

– o(1) = y0αy0a
′y0a

′′y0(a
′′′y0)

ω where a′, a′′, a′′′ ∈ Act

• H(π(2)) contains

– o(2) = y0βy0a
′y0a

′′y0(a
′′′y0)

ω where a′, a′′, a′′′ ∈ Act

• H(π(3)) = H(π(1)).

Given these output trajectories, we can now evaluate whether or not each pair, (π(i), o(i)), satis-
fies φ3 for each values of i. Interestingly, only one (1) of the three pairs satisfies the formula. Only
(π(2), o(2)) satisfies φ3.

133

BIBLIOGRAPHY

[1] Compositional safety rules for inter-triggering hybrid automata (codeocean). https://
doi.org/10.24433/CO.3247007.v1.

[2] Correct-by-construction design of adaptive cruise control with control barrier functions un-
der safety and regulatory constraints. June 2022.

[3] S. Aguilera, M. A. Murtaza, Y. Zhao, and S. Hutchinson. Mass estimation of a moving
object through minimal manipulation interaction. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 6461–6467, 2021.

[4] S. Amin, A. A. Cárdenas, and S. S. Sastry. Safe and secure networked control systems under
denial-of-service attacks. In R. Majumdar and P. Tabuada, editors, Hybrid Systems: Com-
putation and Control, pages 31–45, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[5] M. Anand, V. Murali, A. Trivedi, and M. Zamani. Formal verification of control systems
against hyperproperties via barrier certificates, 2021.

[6] S. M. Asghari and A. Nayyar. Dynamic teams and decentralized control problems with
substitutable actions. IEEE Transactions on Automatic Control, 62(10):5302–5309, 2016.

[7] A. Aspeel, D. Dasnoy, R. M. Jungers, and B. Macq. Optimal intermittent measurements for
tumor tracking in x-ray guided radiotherapy. In Medical Imaging 2019: Image-Guided Pro-
cedures, Robotic Interventions, and Modeling, volume 10951, page 109510C. International
Society for Optics and Photonics, 2019.

[8] A. Aspeel, K. Rutledge, R. M. Jungers, B. Macq, and N. Özay. Optimal control for linear
networked control systems with information transmission constraints, 2021.

[9] K. Astrom and B. Wittenmark. Self-tuning controllers based on pole-zero placement. In IEE
Proceedings D-Control Theory and Applications, volume 127, pages 120–130. IET, 1980.

[10] N. Athanasopoulos, K. Smpoukis, and R. M. Jungers. Invariant sets analysis for constrained
switching systems. IEEE Control Systems Letters, 1(2):256–261, Oct 2017.

[11] M. Athans. Survey of decentralized control methods. NASA. Ames Res. Center Large-Scale
Dyn. Systems, 1975.

[12] Y. Bai and K. Mallik. Accurate abstractions for controller synthesis with non-uniform dis-
turbances. In International Conference on Formal Engineering Methods, pages 297–307.
Springer, 2020.

134

https://doi.org/10.24433/CO.3247007.v1
https://doi.org/10.24433/CO.3247007.v1

[13] D. Baidya and R. G. Roy. Speed control of dc motor using fuzzy-based intelligent model
reference adaptive control scheme. In R. Bera, S. K. Sarkar, and S. Chakraborty, editors,
Advances in Communication, Devices and Networking, pages 729–735, Singapore, 2018.
Springer Singapore.

[14] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008.

[15] L. Bakule. Decentralized control: Status and outlook. Annual Reviews in Control, 38(1):71–
80, 2014.

[16] G. Battistelli, A. Benavoli, and L. Chisci. State estimation with remote sensors and inter-
mittent transmissions. Systems and Control Letters, 61(1):155 – 164, 2012.

[17] C. Belcastro. Parametric uncertainty modeling: an overview. In Proceedings of the 1998
American Control Conference. ACC (IEEE Cat. No.98CH36207), volume 2, pages 992–996
vol.2, 1998.

[18] C. Belta and S. Sadraddini. Formal methods for control synthesis: An optimization per-
spective. Annual Review of Control, Robotics, and Autonomous Systems, 2(1):115–140,
2019.

[19] A. Bemporad, M. Heemels, M. Johansson, et al. Networked control systems, volume 406.
Springer, 2010.

[20] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton University
Press, 2009.

[21] D. Bertsekas and I. Rhodes. Recursive state estimation for a set-membership description of
uncertainty. IEEE Transactions on Automatic Control, 16(2):117–128, 1971.

[22] D. P. Bertsekas. Infinite time reachability of state-space regions by using feedback control.
TAC, 17(5):604–613, 1972.

[23] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust optimiza-
tion. SIAM review, 53(3):464–501, 2011.

[24] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1st
edition, 1997.

[25] S. Bharadwaj, S. Carr, N. Neogi, and U. Topcu. Decentralized control synthesis for air
traffic management in urban air mobility. IEEE Transactions on Control of Network Systems,
8(2):598–608, 2021.

[26] F. Blanchini. Set invariance in control. Automatica, 35(11):1747–1767, 1999.

[27] F. Blanchini and M. Sznaier. A convex optimization approach to fixed-order controller
design for disturbance rejection in siso systems. IEEE Transactions on Automatic Control,
45(4):784–789, April 2000.

135

[28] F. Blanchini and M. Sznaier. A convex optimization approach to synthesizing bounded
complexity ℓ∞ filters. IEEE Trans. on Automatic Control, 57(1):216–221, 2012.

[29] G. V. Bochmann and C. A. Sunshine. A Survey of Formal Methods, pages 561–578. Springer
US, Boston, MA, 1982.

[30] U. Bodkhe, D. Mehta, S. Tanwar, P. Bhattacharya, P. K. Singh, and W.-C. Hong. A survey
on decentralized consensus mechanisms for cyber physical systems. IEEE Access, 8:54371–
54401, 2020.

[31] R. Bozianu, C. Dima, and E. Filiot. Safraless synthesis for epistemic temporal speci-
fications. In International Conference on Computer Aided Verification, pages 441–456.
Springer, 2014.

[32] Z. A. Caddick and B. M. Rottman. Motivated reasoning in an explore-exploit task. Cognitive
Science, 45(8):e13018, 2021.

[33] K. Chatterjee, T. A. Henzinger, J. Otop, and A. Pavlogiannis. Distributed synthesis for ltl
fragments. In 2013 Formal Methods in Computer-Aided Design, pages 18–25. IEEE, 2013.

[34] Y. Chen, J. Anderson, K. Kalsi, S. H. Low, and A. D. Ames. Compositional set invariance in
network systems with assume-guarantee contracts. In 2019 American Control Conference
(ACC), pages 1027–1034. IEEE, 2019.

[35] S. Cheong and I. R. Manchester. Input design for discrimination between classes of lti
models. Automatica, 53:103–110, 2015.

[36] L. Chisci, P. Falugi, and G. Zappa. Gain-scheduling mpc of nonlinear systems. International
Journal of Robust and Nonlinear Control, 13(3-4):295–308, 2003.

[37] Z. Chu, Y. Ma, Y. Hou, and F. Wang. Inertial parameter identification using contact force
information for an unknown object captured by a space manipulator. Acta Astronautica,
131:69–82, 2017.

[38] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. 1999.

[39] A. Colombo, M. Bahraini, and P. Falcone. Measurement scheduling for control invariance
in networked control systems. In 2018 IEEE Conference on Decision and Control (CDC),
pages 3361–3366. IEEE, 2018.

[40] M. Coon and D. Panagou. Control strategies for multiplayer target-attacker-defender differ-
ential games with double integrator dynamics. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pages 1496–1502, 2017.

[41] E. Dallal and P. Tabuada. Decomposing controller synthesis for safety specifications. In
2016 IEEE 55th Conference on Decision and Control (CDC), pages 5720–5725. IEEE,
2016.

[42] R. De Iaco, S. L. Smith, and K. Czarnecki. Universally safe swerve manoeuvres for au-
tonomous driving. arXiv preprint arXiv:2001.11159, 2020.

136

[43] E. De Santis, M. D. Di Benedetto, and L. Berardi. Computation of maximal safe sets for
switching systems. IEEE Trans. on Autom. Control, 49(2):184–195, 2004.

[44] A. R. de Souza, D. Efimov, T. Raı̈ssi, and X. Ping. Robust output feedback mpc: An interval-
observer approach. In 2020 59th IEEE Conference on Decision and Control (CDC), pages
2529–2534. IEEE, 2020.

[45] D. Del Vecchio. A partial order approach to discrete dynamic feedback in a class of hybrid
systems. In International Workshop on Hybrid Systems: Computation and Control, pages
159–173. Springer, 2007.

[46] Y. Ding, F. Harirchi, S. Z. Yong, E. Jacobsen, and N. Ozay. Optimal input design for affine
model discrimination with applications in intention-aware vehicles. In 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems (ICCPS), pages 297–307. IEEE, 2018.

[47] J. Farkas. Theorie der einfachen ungleichungen. Journal für die reine und angewandte
Mathematik (Crelles Journal), 1902(124):1–27, 1902.

[48] A. Feldbaum. Dual-control theory i-ii. Automation and Remote Control 21, 9(11):1961,
1960.

[49] F. Felicioni, N. Jia, Y.-Q. Song, and F. Simonot-Lion. Impact of a (m,k)-firm Data Dropouts
Policy on the Quality of Control. In 6th IEEE International Workshop on Factory Commu-
nication Systems, Factory Communication Systems, 2006 IEEE International Workshop on,
pages 353–359, Torino, Italy, June 2006. IEEE.

[50] I. Fialho and G. Balas. Road adaptive active suspension design using linear parameter-
varying gain-scheduling. IEEE Transactions on Control Systems Technology, 10(1):43–54,
2002.

[51] B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito. Temporal stream logic: Synthesis
beyond the bools. In International Conference on Computer Aided Verification, pages 609–
629. Springer, 2019.

[52] B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In 20th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS’05), pages 321–330. IEEE, 2005.

[53] J. Fu, H. G. Tanner, J. Heinz, and J. Chandlee. Adaptive symbolic control for finite-state
transition systems with grammatical inference. IEEE Transactions on Automatic Control,
59(2):505–511, 2014.

[54] B. Galloway and G. P. Hancke. Introduction to industrial control networks. IEEE Commu-
nications Surveys Tutorials, 15(2):860–880, 2013.

[55] K. Gatsis, M. Pajic, A. Ribeiro, and G. J. Pappas. Opportunistic control over shared wireless
channels. IEEE Transactions on Automatic Control, 60(12):3140–3155, 2015.

[56] X. Ge, Q.-L. Han, and Z. Wang. A dynamic event-triggered transmission scheme for dis-
tributed set-membership estimation over wireless sensor networks. IEEE transactions on
cybernetics, 49(1):171–183, 2017.

137

[57] K. Ghasemi, S. Sadraddini, and C. Belta. Compositional synthesis via a convex parameter-
ization of assume-guarantee contracts. In HSCC ’20: 23rd ACM International Conference
on Hybrid Systems: Computation and Control, Sydney, New South Wales, Australia, April
21-24, 2020, pages 16:1–16:10. ACM, 2020.

[58] K. Ghasemi, S. Sadraddini, and C. Belta. Decentralized signal temporal logic control for
perturbed interconnected systems via assume-guarantee contract optimization. arXiv e-
prints, pages arXiv–2207, 2022.

[59] P. J. Goulart and E. C. Kerrigan. Output feedback receding horizon control of constrained
systems. International Journal of Control, 80(1):8–20, 2007.

[60] P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski. Optimization over state feedback
policies for robust control with constraints. Automatica, 42(4):523–533, 2006.

[61] S. Gulwani, O. Polozov, R. Singh, et al. Program synthesis. Foundations and Trends® in
Programming Languages, 4(1-2):1–119, 2017.

[62] L. Guo. Convergence and logarithm laws of self-tuning regulators. Automatica, 31(3):435–
450, 1995.

[63] L. ”Gurobi Optimization, 2019.

[64] T. Gurriet, P. Nilsson, A. Singletary, and A. D. Ames. Realizable set invariance conditions
for cyber-physical systems. In 2019 American Control Conference (ACC), pages 3642–
3649. IEEE, 2019.

[65] F. Harirchi, S. Z. Yong, and N. Ozay. Passive diagnosis of hidden-mode switched affine
models with detection guarantees via model invalidation. In Diagnosability, Security and
Safety of Hybrid Dynamic and Cyber-Physical Systems, pages 227–251. Springer, 2018.

[66] S. M. Hassaan, M. Khajenejad, S. Jensen, Q. Shen, and S. Z. Yong. Incremental affine
abstraction of nonlinear systems, 2020.

[67] S. M. Hassaan, Q. Shen, and S. Z. Yong. Bounded-error estimator design with missing data
patterns via state augmentation. In American Control Conference, 2019. Accepted.

[68] M. Hekmatnejad, S. Yaghoubi, A. Dokhanchi, H. B. Amor, A. Shrivastava, L. Karam, and
G. Fainekos. Encoding and monitoring responsibility sensitive safety rules for automated
vehicles in signal temporal logic. In Proceedings of the 17th ACM-IEEE International
Conference on Formal Methods and Models for System Design, MEMOCODE ’19, pages
6:1–6:11, New York, NY, USA, 2019. ACM.

[69] L. Heng, S. Hui-Fen, and W. Hao. Self-tuning kalman filter for the city sewage treatment
system. In Proceedings of the 2017 2nd International Conference on Communication and
Information Systems, ICCIS 2017, page 414–418, New York, NY, USA, 2017. Association
for Computing Machinery.

138

[70] M. Herceg, M. Kvasnica, C. Jones, and M. Morari. Multi-Parametric Toolbox 3.0. In ECC,
pages 502–510, Zürich, Switzerland, July 17–19 2013. http://control.ee.ethz.
ch/˜mpt.

[71] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger. Learning-based model pre-
dictive control: Toward safe learning in control. Annual Review of Control, Robotics, and
Autonomous Systems, 3(1):269–296, 2020.

[72] O. Holub, M. Zamani, and A. Abate. Efficient hvac controls: A symbolic approach. In 2016
European Control Conference (ECC), pages 1159–1164, 2016.

[73] P. Jain and M. J. Nigam. Real time control of ball and beam system with model refer-
ence adaptive control strategy using mit rule. In 2013 IEEE International Conference on
Computational Intelligence and Computing Research, pages 1–4, 2013.

[74] M. Jankovic. Control barrier functions for constrained control of linear systems with input
delay. In 2018 Annual American Control Conference (ACC), pages 3316–3321. IEEE, 2018.

[75] L. Jaulin and E. Walter. Guaranteed nonlinear parameter estimation from bounded-error
data via interval analysis. Mathematics and computers in simulation, 35(2):123–137, 1993.

[76] J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt, E. Zawadski, and
A. Platzer. A Formally Verified Hybrid System for the Next-Generation Airborne Colli-
sion Avoidance System (CMU-CS-14-138). 4 2005.

[77] N. Jia, Y.-Q. Song, and R.-Z. Lin. Analysis of networked control system with packet drops
governed by (m,k)-firm constraint. IFAC Proceedings Volumes, 38(2):63 – 70, 2005. 6th
IFAC International Conference on Fieldbus Systems and their Applications.

[78] Z. Jin, C. Ko, and R. M. Murray. Estimation for nonlinear dynamical systems over packet-
dropping networks. In 2007 American Control Conference, pages 5037–5042, July 2007.

[79] R. M. Jungers, A. Kundu, and W. P. M. H. Heemels. Observability and controllability
analysis of linear systems subject to data losses. IEEE Transactions on Automatic Control,
63(10):3361–3376, 2018.

[80] J. Kersten, A. Rauh, and H. Aschemann. Interval methods for robust gain scheduling con-
trollers. Granular Computing, 5(2):203–216, 2020.

[81] S. Keshmiri and S. Payandeh. A centralized framework to multi-robots formation control:
Theory and application. In Collaborative Agents-Research and Development, pages 85–98.
Springer, 2009.

[82] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. The highd dataset: A drone dataset
of naturalistic vehicle trajectories on german highways for validation of highly automated
driving systems. In ITSC, 2018.

[83] P. Kumar, M. Perrollaz, S. Lefèvre, and C. Laugier. Learning-based approach for online
lane change intention prediction. In IEEE Int. Veh. Sym., pages 797–802, June 2013.

139

http://control.ee.ethz.ch/~mpt
http://control.ee.ethz.ch/~mpt

[84] F. Laine, C.-Y. Chiu, and C. Tomlin. Eyes-closed safety kernels: Safety for autonomous
systems under loss of observability. arXiv preprint arXiv:2005.07144, 2020.

[85] J. Lee and G. Dullerud. Optimal disturbance attenuation for discrete-time switched and
markovian jump linear systems. SIAM Journal on Control and Optimization, 45(4):1329–
1358, 2006.

[86] D. J. Leith and W. E. Leithead. Survey of gain-scheduling analysis and design. International
Journal of Control, 73(11):1001–1025, 2000.

[87] S. J. Leon. Linear algebra with applications. Pearson, 2014.

[88] L. Liebenwein, W. Schwarting, C.-I. Vasile, J. DeCastro, J. Alonso-Mora, S. Karaman, and
D. Rus. Compositional and contract-based verification for autonomous driving on road
networks. In Robotics Research, pages 163–181. Springer, 2020.

[89] Z. Liu, L. Yang, and N. Ozay. Scalable computation of controlled invariant sets for discrete-
time linear systems with input delays. In 2020 American Control Conference, ACC 2020,
Denver, CO, USA, July 1-3, 2020, pages 4722–4728. IEEE, 2020.

[90] J. Löfberg. Yalmip : A toolbox for modeling and optimization in matlab. In In Proceedings
of the CACSD Conference, Taipei, Taiwan, 2004.

[91] B. T. Lopez. Adaptive robust model predictive control for nonlinear systems. PhD thesis,
Massachusetts Institute of Technology, 2019.

[92] B. T. Lopez, J.-J. E. Slotine, and J. P. How. Robust adaptive control barrier functions: An
adaptive and data-driven approach to safety. IEEE Control Systems Letters, 5(3):1031–1036,
2021.

[93] A. Lorı́a, E. Panteley, and M. Maghenem. Strict lyapunov functions for model reference
adaptive control: Application to lagrangian systems. IEEE Transactions on Automatic Con-
trol, 64(7):3040–3045, 2019.

[94] M. Maghenem, A. J. Taylor, A. D. Ames, and R. G. Sanfelice. Adaptive safety using control
barrier functions and hybrid adaptation. In 2021 American Control Conference (ACC), pages
2418–2423, 2021.

[95] A. Mahajan, N. C. Martins, M. C. Rotkowitz, and S. Yüksel. Information structures in
optimal decentralized control. In 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC), pages 1291–1306. IEEE, 2012.

[96] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 152–166.
Springer, 2004.

[97] O. Mangasarian. Set containment characterization. Journal of Global Optimization,
24(4):473–480, 2002.

140

[98] I. M. Mareels, B. D. Anderson, R. R. Bitmead, M. Bodson, and S. S. Sastry. Revisiting the
mit rule for adaptive control. In K. ÅSTRÖM and B. WITTENMARK, editors, Adaptive
Systems in Control and Signal Processing 1986, IFAC Workshop Series, pages 161–166.
Pergamon, Oxford, 1987.

[99] K. Mehlhorn, B. R. Newell, P. M. Todd, M. D. Lee, K. Morgan, V. A. Braithwaite, D. Haus-
mann, K. Fiedler, and C. Gonzalez. Unpacking the exploration–exploitation tradeoff: A
synthesis of human and animal literatures. Decision, 2(3):191, 2015.

[100] A. Mesbah. Stochastic model predictive control with active uncertainty learning: A survey
on dual control. Annual Reviews in Control, 45:107–117, 2018.

[101] P.-J. Meyer, A. Girard, and E. Witrant. Compositional abstraction and safety synthesis using
overlapping symbolic models. IEEE Transactions on Automatic Control, 63(6):1835–1841,
2017.

[102] O. Mickelin, N. Ozay, and R. M. Murray. Synthesis of correct-by-construction control pro-
tocols for hybrid systems using partial state information. In American Control Conference,
pages 2305–2311, June 2014.

[103] M. Milanese and A. Vicino. Optimal estimation theory for dynamic systems with set mem-
bership uncertainty: an overview. Automatica, 27(6):997–1009, 1991.

[104] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos defense mechanisms. SIG-
COMM Comput. Commun. Rev., 34(2):39–53, Apr. 2004.

[105] S. Moarref and H. Kress-Gazit. Decentralized control of robotic swarms from high-level
temporal logic specifications. In 2017 International Symposium on Multi-Robot and Multi-
Agent Systems (MRS), pages 17–23, 2017.

[106] S. Mohan and R. Vasudevan. Convex computation of the reachable set for hybrid systems
with parametric uncertainty. In 2016 American Control Conference (ACC), pages 5141–
5147, 2016.

[107] N. Nayyar, D. Kalathil, and R. Jain. Optimal decentralized control with asymmetric one-step
delayed information sharing. IEEE Transactions on Control of Network Systems, 5(1):653–
663, 2018.

[108] S. A. Nazin and B. T. Polyak*. Interval parameter estimation under model uncertainty.
Mathematical and Computer Modelling of Dynamical Systems, 11(2):225–237, 2005.

[109] T.-H. D. Nguyen, D. Hsu, W. S. Lee, T.-Y. Leong, L. P. Kaelbling, T. Lozano-Perez, and
A. H. Grant. CAPIR: Collaborative action planning with intention recognition. In AIIDE,
2011.

[110] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. Ames, J. W. Grizzle, N. Ozay, H. Peng,
and P. Tabuada. Correct-by-construction adaptive cruise control: Two approaches. IEEE
Transactions on Control Systems Technology, 24(4):1294–1307, 2015.

141

[111] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. Ames, J. W. Grizzle, N. Ozay, H. Peng,
and P. Tabuada. Correct-by-construction adaptive cruise control: Two approaches. TCST,
24(4):1294–1307, 2016.

[112] P. Nilsson and N. Ozay. Synthesis of separable controlled invariant sets for modular local
control design. In 2016 American Control Conference (ACC), pages 5656–5663. IEEE,
2016.

[113] P. Osburn. New developments in the design of adaptive control systems. February 1961
Instituteof Aeronautical Sciences, pages Paper–No, 1961.

[114] D. Panagou, M. Turpin, and V. Kumar. Decentralized goal assignment and safe trajectory
generation in multirobot networks via multiple lyapunov functions. IEEE Transactions on
Automatic Control, 65(8):3365–3380, 2020.

[115] S. Pankaj, J. S. Kumar, and R. Nema. Comparative analysis of mit rule and lyapunov rule
in model reference adaptive control scheme. Innovative Systems Design and Engineering,
2(4):154–162, 2011.

[116] P. Parks. Liapunov redesign of model reference adaptive control systems. IEEE Transac-
tions on Automatic Control, 11(3):362–367, 1966.

[117] M. Parmar, M. Halm, and M. Posa. Fundamental challenges in deep learning for stiff contact
dynamics. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5181–5188, 2021.

[118] A. Pneuli and R. Rosner. Distributed reactive systems are hard to synthesize. In Proceedings
[1990] 31st Annual Symposium on Foundations of Computer Science, pages 746–757. IEEE,
1990.

[119] G. Pola, P. Pepe, and M. D. D. Benedetto. Decentralized supervisory control of networks
of nonlinear control systems. IEEE Transactions on Automatic Control, 63(9):2803–2817,
2018.

[120] D. M. Raimondo, G. R. Marseglia, R. D. Braatz, and J. K. Scott. Closed-loop input design
for guaranteed fault diagnosis using set-valued observers. Automatica, 74:107–117, 2016.

[121] A. Rantzer. Minimax adaptive control for a finite set of linear systems. In A. Jadbabaie,
J. Lygeros, G. J. Pappas, P. A. Parrilo, B. Recht, C. J. Tomlin, and M. N. Zeilinger, editors,
Proceedings of the 3rd Conference on Learning for Dynamics and Control, volume 144 of
Proceedings of Machine Learning Research, pages 893–904. PMLR, 07 – 08 June 2021.

[122] W. Ren and R. Jungers. Reachability-based control synthesis under signal temporal logic
specifications. June 2022.

[123] S. Ricker. A question of access: decentralized control and communication strategies for
security policies. In 2006 8th International Workshop on Discrete Event Systems, pages
58–63, 2006.

142

[124] J. Rothe, J. Zevering, M. Strohmeier, and S. Montenegro. A modified model reference
adaptive controller (m-mrac) using an updated mit-rule for the altitude of a uav. Electronics,
9(7), 2020.

[125] M. Rotkowitz and S. Lall. Decentralized control information structures preserved under
feedback. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002.,
volume 1, pages 569–575 vol.1, 2002.

[126] M. Rungger and P. Tabuada. Computing robust controlled invariant sets of linear systems.
IEEE Trans. Autom. Control, 62(7):3665–3670, July 2017.

[127] K. Rutledge and N. Ozay. Belief-prefix control for autonomously dodging switching distur-
bances. In 2020 European Control Conference (ECC), pages 966–972, 2020.

[128] K. Rutledge and N. Ozay. Correct-by-construction exploration and exploitation for unknown
linear systems using bilinear optimization. In 25th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC ’22, New York, NY, USA, 2022. Association for
Computing Machinery.

[129] K. Rutledge, S. Z. Yong, and N. Ozay. Finite horizon constrained control and bounded-error
estimation in the presence of missing data. Nonlinear Analysis: Hybrid Systems, 36:100854,
2020.

[130] K. J. Rutledge, G. Chou, and N. Ozay. Compositional safety rules for inter-triggering hybrid
automata. In Proceedings of the 24th International Conference on Hybrid Systems: Com-
putation and Control, HSCC ’21, New York, NY, USA, 2021. Association for Computing
Machinery.

[131] K. J. Rutledge, S. Z. Yong, and N. Ozay. Optimization-based design of bounded-error esti-
mators robust to missing data. IFAC-PapersOnLine, ADHS Full Papers, July 2018. Analysis
and Design of Hybrid Systems ADHS.

[132] K. J. Rutledge, S. Z. Yong, and N. Ozay. Prefix-based bounded-error estimation with inter-
mittent observations. In American Control Conference, 2019. Accepted.

[133] S. Sadraddini and C. Belta. Formal methods for adaptive control of dynamical systems.
In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 1782–1787,
2017.

[134] S. Sadraddini and C. Belta. Distributed robust set-invariance for interconnected linear sys-
tems. In 2018 Annual American Control Conference (ACC), pages 1274–1279. IEEE, 2018.

[135] S. Sadraddini and R. Tedrake. Linear encodings for polytope containment problems, 03
2019.

[136] Y. E. Sahin, Z. Liu, K. Rutledge, D. Panagou, S. Z. Yong, and N. Ozay. Intention-aware
supervisory control with driving safety applications. In 2019 IEEE Conference on Control
Technology and Applications (CCTA), pages 1–8, 2019.

143

[137] S. Sahu and S. Behera. Improved pole-placement for adaptive pitch control. International
Journal of Swarm Intelligence, 4(2):111–126, 2019.

[138] A. Saoud, A. Girard, and L. Fribourg. Contract-based design of symbolic controllers for
safety in distributed multiperiodic sampled-data systems. IEEE Transactions on Automatic
Control, 2020.

[139] J. K. Scott, R. Findeisen, R. D. Braatz, and D. M. Raimondo. Input design for guaranteed
fault diagnosis using zonotopes. Automatica, 50(6):1580–1589, 2014.

[140] P. Seiler and R. Sengupta. Analysis of communication losses in vehicle control problems.
In American Control Conference, volume 2, pages 1491–1496 vol.2, June 2001.

[141] S. Shalev-Shwartz, S. Shammah, and A. Shashua. On a formal model of safe and scalable
self-driving cars, 2017.

[142] J. S. Shamma and K.-Y. Tu. Set-valued observers and optimal disturbance rejection. IEEE
Trans. on Automatic Control, 44(2):253–264, 1999.

[143] Y. Shi and B. Yu. Robust mixed h2/h control of networked control systems with random
time delays in both forward and backward communication links. Automatica, 47(4):754–
760, 2011.

[144] K. Singh, Y. Ding, N. Ozay, and S. Z. Yong. Input design for nonlinear model discrimination
via affine abstraction. IFAC-PapersOnLine, 51(16):175–180, 2018.

[145] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry. Kalman
filtering with intermittent observations. IEEE Trans. on Automatic Control, 49(9):1453–
1464, 2004.

[146] V. Sinyakov and A. Girard. Formal Controller Synthesis from Specifications Given by
Discrete-Time Hybrid Automata. Automatica, 131, 2021.

[147] J. Skaf and S. P. Boyd. Design of affine controllers via convex optimization. IEEE Trans.
on Automatic Control, 55(11):2476–2487, Nov 2010.

[148] J.-J. Slotine and L. Weiping. Adaptive manipulator control: A case study. IEEE Transac-
tions on Automatic Control, 33(11):995–1003, 1988.

[149] S. W. Smith, P. Nilsson, and N. Ozay. Interdependence quantification for compositional
control synthesis with an application in vehicle safety systems. In CDC, pages 5700–5707.
IEEE, 2016.

[150] A. J. Taylor and A. D. Ames. Adaptive safety with control barrier functions. In 2020
American Control Conference (ACC), pages 1399–1405. IEEE, 2020.

[151] S. Thangavel, S. Lucia, R. Paulen, and S. Engell. Towards dual robust nonlinear model
predictive control: A multi-stage approach. In 2015 American Control Conference (ACC),
pages 428–433, 2015.

144

[152] S. Thangavel, S. Lucia, R. Paulen, and S. Engell. Robust nonlinear model predictive control
with reduction of uncertainty via dual control. In 2017 21st International Conference on
Process Control (PC), pages 48–53, 2017.

[153] M. Tillerson, L. Breger, and J. P. How. Distributed coordination and control of formation
flying spacecraft. In Proc. Amer. Control Conf, volume 2, pages 1740–1745, 2003.

[154] M. Treiber, A. Hennecke, and D. Helbing. Congested traffic states in empirical observations
and microscopic simulations. Physical Review E, 62(2):1805–1824, Aug 2000.

[155] J. K. Tugnait. Approaches of fir system identification with noisy data using higher order
statistics. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(7):1307–
1317, 1990.

[156] K. Uçak and G. Ö. Günel. Model-free mimo self-tuning controller based on support vector
regression for nonlinear systems. Neural Computing and Applications, pages 1–20, 2021.

[157] P. Varaiya. Trends in the theory of decision-making in large systems. In Annals of Economic
and Social Measurement, Volume 1, number 4, pages 493–500. NBER, 1972.

[158] S. Vaskov, S. Kousik, H. Larson, F. Bu, J. R. Ward, S. Worrall, M. Johnson-Roberson, and
R. Vasudevan. Towards provably not-at-fault control of autonomous robots in arbitrary dy-
namic environments. In Robotics: Science and Systems XV, University of Freiburg, Freiburg
im Breisgau, Germany, June 22-26, 2019, 2019.

[159] R. Verma and D. Del Vecchio. Safety control of hidden mode hybrid systems. IEEE Trans-
actions on Automatic Control, 57(1):62–77, 2011.

[160] R. Verma and D. Del Vecchio. Safety control of hidden mode hybrid systems. IEEE Trans-
actions on Automatic Control, 57(1):62–77, Jan 2012.

[161] R. G. Walters and M. M. Bayoumi. Application of a self-tuning pole-placement regulator to
an industrial manipulator. In 1982 21st IEEE Conference on Decision and Control, pages
323–329, 1982.

[162] D. Wang, M. Ha, and J. Qiao. Self-learning optimal regulation for discrete-time nonlin-
ear systems under event-driven formulation. IEEE Transactions on Automatic Control,
65(3):1272–1279, 2020.

[163] L. Wang, A. D. Ames, and M. Egerstedt. Safety barrier certificates for collisions-free mul-
tirobot systems. IEEE Transactions on Robotics, 33(3):661–674, June 2017.

[164] Y. Wang, J. Huang, D. Wu, Z.-H. Guan, and Y.-W. Wang. Set-membership filtering with
incomplete observations. Information Sciences, 517:37–51, 2020.

[165] R. C. Wilson, A. Geana, J. M. White, E. A. Ludvig, and J. D. Cohen. Humans use directed
and random exploration to solve the explore–exploit dilemma. Journal of Experimental
Psychology: General, 143(6):2074, 2014.

145

[166] A. Wintenberg and N. Ozay. Implicit invariant sets for high-dimensional switched affine
systems. In 2020 IEEE 59th Conference on Decision and Control (CDC), pages 3291–3297.
IEEE, 2020.

[167] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Synthesis of control protocols for au-
tonomous systems. Unmanned Systems, 01(01):21–39, 2013.

[168] J. Yang, Z. Cai, Q. Lin, and Y. Wang. Self-tuning pid control design for quadrotor uav based
on adaptive pole placement control. In 2013 Chinese Automation Congress, pages 233–237,
2013.

[169] L. Yang and N. Ozay. Fault-tolerant output-feedback path planning with temporal logic
constraints. In 2018 IEEE Conference on Decision and Control (CDC), pages 4032–4039.
IEEE, 2018.

[170] L. Yang and N. Ozay. Efficient safety control synthesis with imperfect state information. In
Conference on Decision and Control (CDC) 2020. IEEE, 2020.

[171] L. Yang and N. Ozay. Safety control synthesis for systems with missing measurements.
IFAC-PapersOnLine, 54(5):97–102, 2021.

[172] L. Yang and N. Ozay. Scalable zonotopic under-approximation of backward reachable sets
for uncertain linear systems. IEEE Control Systems Letters, 6:1555–1560, 2022.

[173] T. C. Yang. Networked control system: a brief survey. IEE Proceedings-Control Theory
and Applications, 153(4):403–412, 2006.

[174] L. Ye, H. Zhu, and V. Gupta. On the sample complexity of decentralized linear quadratic reg-
ulator with partially nested information structure. arXiv preprint arXiv:2110.07112, 2021.

[175] W. Zhang, M. S. Branicky, and S. M. Phillips. Stability of networked control systems. IEEE
Control Systems, 21(1):84–99, 2001.

[176] X.-M. Zhang and Q.-L. Han. Network-based h∞ filtering for discrete-time systems. IEEE
Transactions on Signal Processing, 60(2):956–961, 2012.

[177] X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng. Networked con-
trol systems: a survey of trends and techniques. IEEE/CAA Journal of Automatica Sinica,
7(1):1–17, 2020.

[178] K. Åström, U. Borisson, L. Ljung, and B. Wittenmark. Theory and applications of self-
tuning regulators. Automatica, 13(5):457–476, 1977.

[179] K. J. Åström and B. Wittenmark. Adaptive control. 1995.

146

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Acronyms
	Abstract
	Introduction
	Existing Gaps
	Literature Review
	Summary of Contributions

	Mathematical Preliminaries
	Alphabets and Languages
	Polytopes
	Block Triangular Matrices
	Types of Dynamical Systems
	Invariant Sets

	Correct-By-Construction Control with Missing Data
	Introduction
	Problem Statement
	Synthesis of a Prefix-Based Feedback
	Discussions
	Examples

	Synthesis of Finite-Horizon Adaptive Controllers for Hybrid Systems Using Bilinear Optimization
	Introduction
	Problem Formulation
	Estimator Structure
	Internal Controller Structure
	Optimization-Based Solution
	Results

	Controller Synthesis for KLTL Tasks
	Introduction
	Problem Statement
	Approach
	Satisfying More Complex Formulas
	Results

	Intention-Aware Supervisory Control with Driving Safety Applications
	Introduction
	Problem Statement and Architecture
	The Scenario and System Models
	The Guardian for the Overtake Scenario
	Results

	The Inter-Triggering Hybrid Automaton
	Introduction
	A modeling formalism for interacting systems
	Compositional Safety Rules
	Experiments
	Discussion

	Conclusions
	Future Work

	Appendices
	Missing Data Proofs
	Proofs of Properties of Block Lower Triangular Matrices
	Matrices and Sets for Estimator and Controller Synthesis Problems
	Proofs of Main Results
	Detectability Related Proofs

	Defining the Resets and Resolution Function for the Highway Example
	The Difference between KLTL and LTL
	Transition Systems with Partially Visible States
	KLTL Interpretation for Partially Observed Transition Systems
	Example 1: Eventually Learning
	Example 2: The Role of Inputs

	Bibliography

