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a b s t r a c t

In this paper, we propose an optimization-based design technique for constrained con-
trol and bounded-error state estimation for affine systems in the presence of intermittent
measurements. We treat the affine system as a switched system where the measurement
equation switches between two modes based on whether a measurement exists or is
missing, and model potential missing data patterns with a finite-length language that
constrains the feasible mode sequences. Then, we introduce a novel property, equalized
recovery, that generalizes the equalized performance property and that allows us to
tolerate missing observations. By utilizing Q -parametrization, we show that a finite
horizon optimal estimator/controller can be constructed using time-based and prefix-
based approaches, where the latter implicitly estimates the specific missing data pattern
(i.e., mode sequence), within the given language, according to the prefix observed so
far. We illustrate with numerical examples that the proposed approaches can provide
desirable performance guarantees.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Feedback control and state estimation are central to enabling advanced and smart technologies for dynamical systems
such as autonomous vehicles, industrial robots, etc. While controller and estimator design techniques are abundant, many
of them rely on the common assumption that regularly sampled sensor measurements are reliably available. However, as
systems become increasingly integrated and distributed, such access to sensory data can no longer be taken for granted
in the control and decision-making loops of the system. For example, in networked control systems where sensory data is
transmitted over unreliable communication networks, measurement packets may be dropped [1,2] or they can experience
denial of service attacks [3], whereas for many autonomous systems that rely on a myriad of sensors and perception
algorithms for state information such as position and velocity, said information may be temporarily missing due to sensor
glitches, occlusions, or classification errors in the perception algorithms [4]. Therefore, there is a need for control and
estimation algorithms that are robust to missing data.

Safety-criticality of these systems also require certain invariance properties in the form of state constraints that hold
indefinitely. These state constraints can take the form of a small enough tracking error in control problems [5] or small
enough estimation error in estimation problems [6], where exceeding a certain error bound is deemed unsafe. Invariance
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becomes particularly challenging when the controllers and estimators do not have regular access to measurements. The
goal of this paper is to develop a methodology for the design of controllers and estimators that guarantee that certain state
constraints are satisfied even in the face of missing measurement events. Our key insight is to relax invariance conditions
by allowing the system or error states to satisfy a slightly larger bound during missing data events as long as the safety
constraints are not violated and the states come back to the original level at the end. We call this property equalized
recovery, as a generalization of equalized performance proposed in the context of bounded error estimation that requires
guaranteeing a uniform bound [6].

In particular, we propose an optimization-based method to synthesize controllers and estimators that provide
equalized recovery guarantees for discrete-time linear systems with intermittent measurements. We model the system
with intermittent measurements as a switched system with the mode signal representing whether the measurement is
available or missing. Instead of the commonly used probabilistic models for intermittent measurements [2], we model
the feasible missing data patterns using a finite language, where each word in the language corresponds to a potential
mode signal. At run-time, although we know that the mode signal belongs to this finite language, we do not know which
word in the language is being realized since the missing data pattern is observed online. Earlier work [7], defines a
worst-case word for the given language and designs an estimator that is robust against this worst-case missing data
pattern. Here we propose to adapt the filter/controller gains based on the prefix of the missing data pattern observed
thus far; hence, significantly improving achievable recovery levels. The design of these controller/estimator gains are
enabled by Q -parametrization, which is a technique used to recast the optimal control design for affine systems as a
convex programming problem [8]. Although, in general, imposing additional structure on filter/controller gains in Q -
parametrization-based design leads to non-convex problems, one of our main contributions is to show that the structure
imposed by prefix dependency of the gains still leads to a convex problem. Therefore, the proposed controllers and
estimators not only provide significantly improved recovery levels, but also can be synthesized efficiently.

Additionally, we investigate the relationship between equalized recovery for estimation problems and detectability
for linear systems with data loss as presented in [9], and show that equalized recovery is slightly more general than
detectability. Finally, the effectiveness of our proposed estimator and controller designs are demonstrated in simulation
on several autonomous driving scenarios, including adaptive cruise control and lane keeping. We also use a formation
control problem with multiple agents to demonstrate scalability.

Preliminary results for designing equalized recovery estimators have been presented in [7,10], where the former paper
considers the worst-case language and the latter introduces a prefix-based approach to reduce conservativeness. The
current paper combines the results in [7,10] and extends them to control synthesis problems with missing data, while
providing a more comprehensive treatment of the problem together with full proofs. The rest of the paper is organized as
follows. We start by presenting some notation and preliminary results in Section 2. The problems under consideration are
formally stated in Section 3. Section 4 states the main results on how to synthesize estimators and controllers that satisfy
the required equalized recovery levels. Some implementation details and connections to detectability/stabilizability are
given in Section 5, while illustrative examples are given in Section 6 before the paper is concluded in Section 7. Most of
the proofs are deferred to the Appendix to ease the exposition.

1.1. Literature review

Control and estimation problems for systems subject to missing data or intermittent measurements have been
extensively considered in the context of networked control systems [1,2,11] and more recently for security problems
involving denial of service attacks [3]. For missing and intermittent observations modeled by probability distributions,
extensions of the Kalman filter have been proposed (e.g., [2,12,13]) to estimate the system state. Similarly, in this setting
of probabilistic data loss models, stabilizing controllers or controllers minimizing a quadratic cost have been studied
(e.g., [1,14,15]). Nonetheless, the probabilistic nature of these approaches is not directly applicable for safety-critical
applications, where hard bounds on the estimation or tracking errors are often necessary.

Another approach for modeling missing data patterns is to use a characterization of the set of all plausible missing
data patterns. A simple characterization of this sort is the so-called (m, k) firmness [16,17] that indicates that for any k
consecutive measurements, at least m are available. A more general set description can be obtained using automata [9]
or finite languages [7,10,18] to represent the set of all feasible missing data patterns. Jungers et al. [9] study observability
and controllability like properties for discrete-time linear systems subject to data loss, and characterize conditions on
the system and the automata representing the missing data pattern for these properties to hold. On the other hand,
the controller and estimator design problem is not considered in [9] and theoretical analysis focuses on the idealized
setting with no process or measurement noise. In this paper, we use the language-based representation as in our earlier
work [7,10,18] and focus on control and estimator designs, which guarantee constraints on the states or errors are satisfied,
for systems subject to missing measurements and various types of noise. Another related, yet complementary line of
work is on designing measurement schedules (i.e., when to measure and when not to measure if there is a budget on the
number of measurements) together with controls [19,20], which differs from our setting in that we assume the missing
measurements are chosen adversarially from the set of feasible patterns.

As we are interested in enforcing constraints on the control or estimation error, our results are related to disturbance
rejection, set-valued observers, or ℓ∞ filtering [6,21–24], though these approaches cannot readily handle missing data. Of
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particular interest to our approach is an intuitive property for state estimators called equalized performance that ensures
that the estimation error does not increase at each step (e.g., [6,25]). Instead, we allow a bounded increase in the error
during missing data events as long as the error recovers back to its original level at the end.

From a computational standpoint, our controller and estimator synthesis approach builds upon Q -parametrization to
reduce the non-convex measurement feedback controller/estimator design problem to a convex optimization form via a
nonlinear change of variables [8]. In particular, we restrict the controllers and design variables in the estimators to be
affine in the measurements with memory (i.e., we allow the current action to depend on past measurements). However,
the main difference is that, instead of memory depending only on the output measurement history, the memory of the
controllers and filters we design also depends on the prefix of the missing data pattern seen so far (i.e., on the discrete-
state history), which results in significantly improved performance. As an alternative to measurement feedback one can
use disturbance feedback [3,18], which is equivalent to measurement feedback only in special cases [26]. Existing work
using disturbance feedback with potentially missing data [3,18] does not consider dependence on the discrete-state history
and our prefix-based parametrization can be used in disturbance feedback controllers/filters as well to improve their
performance. Moreover, as a minor difference from the literature, both disturbance feedback and measurement feedback
with Q -parametrization are mostly used for optimal control while we use the latter to enforce constraints in a worst-case
setting using tools from robust optimization, a problem stated as a future direction in [3]. Finally, the prefix dependence
can be interpreted as essentially performing estimation at the discrete-level akin to estimators in hidden mode hybrid
systems [27,28], however in our case the mode is observed (we know whether the measurement is missing or not at each
time) but we are trying to estimate the mode-sequence (the missing data pattern). The prefix-based parametrization we
propose is also closely related to path-dependent controllers proposed in [24] in the context of disturbance attenuation
and stability for Markov jump linear systems, with the difference being that the problems in [24] lead to linear matrix
inequalities in the controller gains due to different control objectives, whereas in our setting the problems are non-convex
in the filter/controller gains and a nonlinear transformation is needed.

2. Notation and preliminaries

We denote the set of real numbers by R and the set of binary numbers by B. Throughout this work, the norm ∥·∥ is the
infinity norm, i.e., for a vector v ∈ Rn, ∥v∥

.
= max

i=1,...,n
|vi|. The symbol ⊗ represents the Kronecker product, Ik represents the

identity matrix of size k, 0k×m represents the k×m zero matrix, 1k denotes a k dimensional vector of ones. The subscripts
are dropped when the dimension of the matrix is clear from the context. The operator diag : Rn

→ Rn×n maps a vector
v ∈ Rn to the n×n diagonal matrix with the elements of v on its main diagonal. For matrices and vectors, the inequalities
≥ are always taken element-wise. For a (block) vector v, vk and vi:j denote its kth entry, and its sub-vector consisting of
entries from ith to jth, respectively.

We call any finite set Σ an alphabet. In particular, we use Σ = B to represent missing data patterns. Any Σ-valued
signal q = q(t0)q(t0 + 1) . . . q(t0 + N) is called a word. The symbol Σ∗ denotes the set of all finite-length words, whereas
ΣT and Σ [T ] denote the set of all words with length equal to T or with length up to T that are formed by elements in
Σ , respectively. For a word q ∈ Σ∗, its length is denoted by |q|. For i ≤ |q|, we use q[1:i] to denote the length i prefix
of q. For example, if q = q(t0)q(t0 + 1) . . . q(t0 + N), then q[1:i] = q(t0)q(t0 + 1) . . . q(t0 + i − 1). Finally, the set of all
non-empty prefixes of q is denoted by Pref (q). As a concrete example, the word q = {1001} ∈ B[4] has length |q| = 4,
q[1:3] = 100 is a prefix, q[2:3] = 00 is a subword but not a prefix, and Pref (q) = {1, 10, 100, 1001}. An arbitrary set L of
words formed from a given alphabet Σ is called a language over Σ . We overload the Pref operator and use it for languages
as Pref (L) .

= ∪q∈LPref (q).

2.1. Properties of block triangular matrices

In this section, we present some properties of block triangular matrices that are used to develop optimization results
later in the paper.

Definition 1 (Leading Block Principal Submatrix). The i-th leading principal block submatrix of a l×p block matrix X ∈ Ral×bp,
denoted by BMi(X), is the l × p block matrix:

BMi(X) = X([1 : il], [1 : ip])

for all i ∈ [1,min(a, b)], where X([1 : il], [1 : ip]) indicates the submatrix formed by all entries of matrix X that are in
both the first il rows and the first ip columns.

Several useful properties of the leading principal block matrix operator BMi(·) for block lower triangular matrices are
stated next. Proofs of these statements can be found in Appendix A.

Lemma 1. Let W , X ∈ Rap×bq, Y ∈ Rbq×cr and Z ∈ Ras×as. The following properties hold:

1. BMi(W + X) = BMi(W ) + BMi(X);
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2. If X and Y are p × q and q × r block lower triangular, respectively, then BMi(XY ) = BMi(X)BMi(Y );
3. If Z is nonsingular and s × s block lower triangular, then BMi(Z−1) = (BMi(Z))−1,

for all i ∈ [1,min(a, b, c)].

Proposition 1. Let C̄ (1) and C̄ (2) be p × n block lower triangular matrices that share the same j-th leading block principal
submatrix:

BMj(C̄ (1)) = BMj(C̄ (2)).

Also let F (1), F (2) be n×p block lower triangular matrices and let S be an n×n block lower triangular matrix, all with compatible
block sizes. Define, for i ∈ {1, 2},

Q (i) .
= F (i)(I − C̄ (i)SF (i))−1. (1)

Then,

BMj(F (1)) = BMj(F (2)) ∈ Rjn×jp

if and only if

BMj(Q (1)) = BMj(Q (2)) ∈ Rjn×jp.

Proposition 2. Consider the following pairs of matrices (C̄ (1), C̄ (2)) and (Q (1),Q (2)) that share the same j-th principal block
leading submatrix amongst each pair

BMj(C̄ (1)) = BMj(C̄ (2)),

BMj(Q (1)) = BMj(Q (2))

and consider two vectors f (1) and f (2) and a block lower triangular matrix S. Define, for i ∈ {1, 2}:

r (i) = (I + Q (i)C̄ (i)S)f (i). (2)

Then, the vectors f (1) and f (2) satisfy:

f (1)k = f (2)k ∀k ∈ [1, jn]

if and only if the first jn entries of the vector r (1) is identical to that of r (2):

r (1)k = r (2)k ∀k ∈ [1, jn].

3. Problem setup

As alluded to in the introduction, the goal of this paper is to design feedback control or estimation mechanisms that
are robust to missing measurements. This section describes the system model considered, including the missing data
patterns. Then, we formally state the problem.

3.1. Model description

We consider discrete-time affine systems with state update and measurement equations defined as:

x(t + 1) = Ax(t) + Bu(t) + w(t) + k, w(t) ∈ W,

y(t) =

{
Cx(t) + v(t), q(t) = 1,
∅, q(t) = 0,

v(t) ∈ V,
(3)

where A, B, C, k are known system matrices, x(t) ∈ X ⊆ Rn is the continuous state, u(t) ∈ U ⊆ Rm is the input,
w(t) ∈ W ⊆ Rn is the process noise, y(t) ∈ Y ⊆ Rp

∪ {∅} is the output measurements of the system, q(t) ∈ B is
the discrete state/mode of the system, with q(t) = 1 denoting that the measurement vector is available and q(t) = 0
denoting that the measurement vector is not available (i.e., ‘‘missing"), and v(t) ∈ V ⊆ Rp is the measurement noise. The
noise terms w(t) and v(t) are unknown but bounded, and their bounds are known (i.e., W = {w ∈ Rn

| ∥w∥ ≤ ηw} and
V = {v ∈ Rp

| ∥v∥ ≤ ηv}). Moreover, we assume that the control input u(t) is bounded (i.e., U = {u ∈ Rm
| ∥u∥ ≤ ηu}).

Remark 1. We note that the methods developed in this paper can be extended to work with systems that have time-
varying matrices in the place of A, B, C , f . However, this case is omitted for clarity of notation. Similarly, the sets W , V
and U can be arbitrary polytopes but for simplicity, we constrain them to be hypercubes in the rest of the paper.
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The performance of any controller or estimator designed for the system in (3) clearly depends on how much
information is received, and yet the evolution of the discrete state q(t) is not included in (3). To model this, we introduce
a constraint on the evolution of q(t). If the evolution of the discrete state is not constrained at all, one possibility is
q(t) = 0 for all times, and there is no measurement for feedback. However, in many applications, it is possible to have
a priori information about admissible missing data patterns (e.g., based on a network device’s specification sheet or the
knowledge about communication protocols that are packet-drop tolerant). To describe the evolution of the discrete state
q(t), we introduce the missing data language L:

Definition 2 (Missing Data Language). A missing data language L ⊆ BT is a set of words q, called a missing data pattern,
that describes the possible trajectories of q(t) in the system (3). A mode signal q = q(t0), q(t0 + 1), . . . , q(t0 + T − 1) is
said to satisfy the missing data language L if q ∈ L.

Remark 2. Other works in the literature have considered representing missing data patterns or sequences with concepts
such as (m, k)-firmness [16,17] or a bound on the number of consecutive missing data packets. The representation that
we describe here is general enough that it can express both of these concepts.

3.2. Problem statement

In what follows, we describe several constrained control and estimation problems for the system in (3). Designing a
controller that enforces certain state constraints or an estimator that guarantees that estimation error remains bounded is
particularly challenging when the controller or estimator does not have access to all measurements for all times. Therefore,
we introduce a relaxed invariance-type objective that we call equalized recovery. Finally, we present a formal unified
problem statement.

An observer or an estimator O : (Y × U × B)∗ ↦→ X maps the measured input/output sequence and the missing data
sequence to an estimate x̂ of the state. In particular, we will consider Luenberger-like estimator structures of the form:

x̂(t + 1) = Ax̂(t) + Bu(t) − ue(t) + k,
ŷ(t) = Cx̂(t), (4)

where the injection term ue(t) is the design variable. The constrained estimation problem aims to impose constraints on
the estimation error e(t) = x(t) − x̂(t) by appropriately designing ue(t).

Another problem of interest is that of synthesizing a controller C : (Y × B)∗ ↦→ U , where the design variable is u(t) in
(3). The goal is to impose constraints on the state of the closed-loop system, while it is required to respect the constraints
on the input imposed by the set U . It is possible to pose a similar problem for tracking control, where there is a given
desired trajectory xd(t0), xd(t0 + 1), . . . , xd(t0 + T ) and its corresponding ud(t0), ud(t0 + 1), . . . , ud(t0 + T − 1) such that
xd(t + 1) = Axd(t)+ Bud(t)+ k, and the objective is to guarantee constraints on the tracking error ξ (t) .

= x(t)− xd(t). One
can also consider imposing constraints on affine functions of the states.

Both estimation and control synthesis problems can be mapped (with slight modifications) to a generic constrained
control problem on a unified system:

ξ (t + 1) = Aξ (t) + Bξuξ (t) + w(t) + kξ , w(t) ∈ Wξ ,

yξ (t) =

{
Cξ (t) + v(t), q(t) = 1,
∅, q(t) = 0,

v(t) ∈ Vξ ,
(5)

where the transformed state ξ (t), the transformed output yξ (t) ∈ Yξ and the transformed input uξ (t) ∈ Uξ , as well as
Bξ , kξ , Uξ , and Yξ represent different signals, matrices and sets depending on the problem of interest (for the sake of
completeness, they are provided in Appendix B). The proper objective for both problems is then to design a feedback law
for uξ (t) as a function of all previous outputs {yξ (τ )}tτ=t0 and discrete states {q(τ )}tτ=t0 such the states of the system (5)
satisfies certain constraints.

Finally, as mentioned earlier, when the measurements can be missing as in (5), it is not reasonable to expect that the
constraints hold invariantly. For instance in an estimation or tracking problem, it might be reasonable to allow a larger
bound during missing data events. To capture this, we define a new type of constraint that relaxes invariance.

Definition 3 (Equalized Recovery). A discrete-time dynamical system as in (5) is said to achieve an equalized recovery
level M1 with recovery time T and intermediate level M2 ≥ M1 at time t0 if for any initial state with ∥ξ (t0)∥ ≤ M1, we
have ∥ξ (t)∥ ≤ M2 for all t ∈ [t0, t0 + T ] and ∥ξ (t0 + T )∥ ≤ M1.

Equalized recovery expresses a form of boundedness for the trajectories of the system and can be viewed as a form
of weak ‘‘invariance", where instead of enforcing the set X1

.
= {x | ∥x∥ ≤ M1} being invariant, we relax the invariance

condition and allow the states to be in X2
.
= {x | ∥x∥ ≤ M2} as long as they recover back to the set X1. Equalized

recovery’s interpretation as weak invariance is somewhat related to multi-set invariance discussed in [29] for switched
systems. For estimation problems, in the special case where M1 = M2 and T = 1, equalized recovery reduces to equalized
performance [6,25,30], which essentially states that ∥ξ (t)∥ ≤ M1 should be invariant with ξ being the estimation error.
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Remark 3. Instead of imposing equalized recovery on the state ξ (t), it also possible to consider equalized recovery on a
subset or a linear combination of the state, i.e., z(t) = Lξ (t), if desired. The proposed synthesis solution in Section 4 can
be slightly modified to account for this in a straightforward manner. Furthermore, in addition to the infinity norm, we
can also consider other ‘‘set templates" such as zonotopes with minor modifications to our proposed solution.

Given all these elements, the problem we are interested in can be formally stated as follows:

Problem 1. Consider a missing data language L ⊆ BT , and a system of the form (5), whose mode signal q(t),
t ∈ [t0, t0 + T − 1] satisfies the missing data language L. Given the recovery level M1, intermediate level M2 ≥ M1,
and recovery time T , find a feedback law Γ : (Yξ × B)∗ ↦→ Uξ such that the system achieves an equalized recovery level
M1 with recovery time T and intermediate level M2.

4. Synthesis of a prefix-based feedback

This section addresses the feedback synthesis problem in Problem 1 by developing convex optimization problems
that can construct affine feedback laws. We start with a commonly used time-based affine feedback law and show how
language constraints can be integrated in this. Then, we present a new feedback structure that updates the gains based
on the prefix of the missing data pattern seen so far and show that prefix-based feedback laws generalize the time-based
ones and, moreover, that the synthesis of prefix-based affine feedback laws can be reduced to a convex optimization
problem. The proofs of the main results are provided in Appendix C.

4.1. Time-based feedback laws and their limitations

A common structure for feedback laws, which we call time-based, takes the following form [8]:

uξ (t) = f (t) +

t∑
τ=t0

F(t,τ )yξ (τ ). (6)

Note that if there is a single missing data pattern q(∗) (i.e., the language L has only one word), one could interpret the
system in (5) as a linear time-varying system instead of a switched system, by defining a time-varying measurement
matrix C(t) = 0 when q(∗)(t) = 0, and C(t) = C when q(∗)(t) = 1, which essentially sets the output to 0 when it is
missing. If we define uξ

.
=

[
uξ (t0)⊤, uξ (t0 + 1)⊤, · · · uξ (t0 + T − 1)⊤

]⊤ associated with a word q(∗), the feedback
laws in (6) can be written in matrix–vector form as follows:

uξ = f (∗) + F (∗)yξ ,

where

f (∗) .
=

[
f (t0)⊤ f (t0 + 1)⊤ · · · f (t0 + T − 1)⊤

]⊤ (7)

and

F (∗) .
=

⎡⎢⎢⎢⎢⎣
F(t0,t0) 0 · · · 0

F(t0+1,t0) F(t0+1,t0+1)
...

...
. . . 0

F(t0+T−1,t0) F(t0+T−1,t0+1) · · · F(t0+T−1,t0+T−1)

⎤⎥⎥⎥⎥⎦ . (8)

The design of feedback laws of the form (6), or equivalently finding (F (∗), f (∗)) that guarantees certain convex constraints
on the state and input, is in general a non-convex problem due to the states of the closed-loop system being a non-convex
function of the gains (F (∗), f (∗)). Nevertheless, a non-linear change of variables, namely Q -parametrization, is used in [8]
to render the design of such feedback laws a convex problem.

Our previous work [7] introduces a method for representing any given language L with a more difficult language L∗

that satisfies |L∗
| = 1. We do this by introducing a partial order for words q(1), q(2) ∈ BT for arbitrary T as:

q(1) ⪯ q(2) ⇐⇒ (∀i ∈ [1, T ])(q(1)
[i] = 0 H⇒ q(2)

[i] = 0).

With this partial order, one can derive a word that is uniquely ‘‘harder" or ‘‘more missing" than any in the given language
L, in the sense of being the least upper bound for the set L. We refer to this least upper bound as the worst-case word q∗

and the worst-case language is then given by L∗ .
= {q∗

}. Solving for gains (F (∗), f (∗)) associated with {q∗
} that guarantees

an equalized recovery level, then, guarantees the same equalized recovery level for any missing data pattern in L when
these gains are used for feedback [7].

However, the timed-based solution based on the use of the worst-case language L∗ has some limitations. Consider the
following language L = {q(1), q(2)} with q(1) = 1011 and q(2) = 1101. In this case, the worst-case language L∗ can be
identified by performing a bitwise AND of q(1) and q(2): L∗

= {1001}.
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Note that in the above example with the language L = {q(1), q(2)}, the discrete state’s value at time t = t0 + 1 directly
describes the word in L that is being executed. i.e., if q(t0 +1) = 1, then we know that trajectory q(2) of the discrete state
is occurring; otherwise, q(1) is occurring. So, if we make that identification at time t we use a set of feedback gains that
are specific to an individual word after the second time step instead of the feedback gains designed with L∗. In such a
scheme, the feedback would only need to be open-loop on one time instance. Using a new set of gains that were specific
to a single word in L instead of the worst-case word q∗ would obviously reduce the recovery level in this case and across
a broad number of other examples. On the other hand, time-based feedback ignores the observed mode sequence so far
and tries to be robust against all words in the language in an open-loop (in the discrete mode) fashion.

The above might indicate that one could simply synthesize a feedback gain for each word q in the language L and
choose the proper gain at runtime to arrive at a less conservative solution, but the selection of a proper gain can be tricky
even in the simple example that was shown above. Ultimately, we cannot select the exact gain that we need in such a
solution because we cannot know the word that is being executed at the beginning of the time horizon. For instance, in
the example language above, it is impossible to discern which word is occurring after receiving the measurement at time
t0 of q(t0) = 1 because 1 is a prefix of both words in L. This motivates a new type of prefix-based feedback structure that
we introduce in the next subsection.

4.2. Prefix-based feedback laws

To overcome the limitations of the time-based feedback laws, the feedback laws for the controllers/estimators should
have some understanding of the currently observed sequence of the discrete state, which we capture by the following
feedback structure,

uξ (q[t0:t]) = f (t, q[t0:t]) +

t∑
τ=t0

F(t,τ ,q[t0 :t])yξ (τ ), (9)

We call this a prefix-based feedback law. Similarly, estimators (4) and controllers with injection terms or outputs in the
form (9) are called prefix-based estimators and prefix-based controllers, respectively.

While the time-based solutions use the available (non-missing) output measurement history, {yξ (τ )}tτ=t0 , for feedback,
prefix-based feedback laws use both the output history and the discrete-state history, {yξ (τ )}tτ=t0 and {q(τ )}tτ=t0 . By its
definition, it essentially also performs estimation at the discrete-level (or online model detection) to detect which missing
data pattern in L is active and adapts the filter gains accordingly. Whereas, the time-based estimator/controller is agnostic
to the missing data pattern and tries to be robust rather than adaptive. The following proposition formally captures the
fact that prefix-based estimators/controllers are more general than time-based estimators/controllers.

Proposition 3. For any time-based feedback law for the dynamical system in (5) with missing data pattern given by a
fixed-length language L, identical performance can be obtained using a prefix-based feedback law.

Proof. Let the transformed input term for the time-based feedback law be

uξ (t) = f̄ (t) +

t∑
τ=t0

F̄(t,τ )yξ (τ ). (10)

Define the gains of the prefix-based feedback law’s transformed input term in (9) as f (t, λ) .
= f̄ (t), F(t,τ ,λ)

.
= F̄(t,τ ) for all

t ∈ [t0, t0 + T − 1], τ ∈ [t0, t] and for all λ ∈
⋃

q∈L Pref (q). Then the two feedback laws are equivalent. □

In order to design prefix-based feedback gains, we associate with each word q(i) ∈ L a pair of gain matrices (F (i), f (i))
defined as in (7)–(8). However, since at run-time we do not know which word q(i) is active, we enforce some constraints
on the gain matrices of words sharing prefixes as follows:

(p ∈ Pref (q(i)) ∩ Pref (q(j))) H⇒

(
BM|p|(F (i)) = BM|p|(F (j))

)
∧

(
(f (i))1:|p|m = (f (j))1:|p|m

)
,

∀q(i), q(j) ∈ L. (11)

Moreover, we utilize the constrained optimal control approach in [8] to jointly solve for all (F (i), f (i)), which involves
the use of Q -parametrization to convert the non-convex problem into a convex one. However, it is well known that
Q -parametrization does not generally lead to convex problems when additional structure on the gains F (i) and f (i) are
imposed. One of our main results is thus to show that the prefix dependency of the gains in (11) still leads to a
convex problem when using Q -parametrization. More precisely, in the following theorem, we will present a bijection
relationship between the constraints (11) on the gain matrices/vectors of prefix-based feedback of the form in (9) with the
parametrization in (1) and (2). Hence, the convexity of the corresponding Q -parametrization is preserved when imposing
the prefix dependency constraints.
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Theorem 1. Given a prefix-based estimator/controller with the transformed input term (9), we associate with it block matrices
{(F (i), f (i))}|L|

i=1 formed from the filter gains, where for all q(i) ∈ L, the (j, k)-block entry F (i)
jk of F (i) is defined as

F (i)
jk

.
= F(t0+j−1,t0+k−1,q(i)

[1:j])
(12)

∀k ∈ [1, j], ∀j ∈ [1, T ], and F (i)
jk = 0 otherwise; and the j-th block entry of the feedforward term f (i) is defined as

f (i)j
.
= f (t0 + j − 1, q(i)

[1:j]) (13)

∀j ∈ [1, T ]. Let S and C̄ (i) be as:

C̄ (i) .
=

[
diag(q(i)) ⊗ C 0pT×n

]
,

S .
=

⎡⎢⎢⎢⎢⎣
0 0 · · · 0
Bξ 0 · · · 0
ABξ Bξ · · · 0
...

...
. . . 0

AT−1Bξ AT−2Bξ · · · Bξ

⎤⎥⎥⎥⎥⎦ .
(14)

Then, Eqs. (1) and (2) define a bijection such that any estimator {(F (i), f (i))}|L|

i=1 is paired with one and only one element in
the polyhedral set:

Q(L) .
=

⎧⎨⎩{(Q (i), r (i))}|L|

i=1

⏐⏐⏐⏐⏐⏐
Q (i) is block lower diagonal, ∀i,

(p ∈ Pref (q(i)) ∩ Pref (q(j))) H⇒

(
BM|p|(Q (i)) = BM|p|(Q (j))

)
∧

(
(r (i))1:|p|m = (r (j))1:|p|m

)
,
∀q(i), q(j) ∈ L

⎫⎬⎭ . (15)

Using the above theorem, a necessary and sufficient condition for the existence of prefix-based estimators and
controllers that solve Problem 1 can then be formulated as follows:

Theorem 2 (Estimator and Controller Synthesis with Missing Data (Prefix-Based)). There exists a prefix-based estima-
tor/controller (i.e., {(F (i), u(i)

0 )}|L|

i=1) that satisfies equalized recovery with parameters (M1,M2,L) if and only if the following
robust linear programming problem is feasible:

Find
{
(Q (i), r (i))

}|L|

i=1 ∈ Q(L) (16a)

subject to
∀(∥w∥ ≤ ηw, ∥v∥ ≤ ηv, ∥ξ (t0)∥ ≤ M1) :

∥uξ + ud∥ ≤ ηu, ∥ξ
(i)

∥ ≤ M2 and ∥
[
0n×nT In

]
ξ (i)

∥ ≤ M1,
∀i ∈ [1, |L|], (16b)

where

ξ (i)
= (H + SQ (i)C̄ (i)H)w + SQ (i)N (i)v + (I + SQ (i)C̄ (i))(Jξ (t0) + Hk̃) + Sr,

uξ = Q (i)C̄ (i)Hw + Q (i)N (i)v + Q (i)C̄ (i)(Jξ (t0) + Hk̃) + r,
(17)

C̄ (i) and S are defined in (14), Q(L) is as defined in (15), (18)

N (i)
= diag(q(i)) ⊗ I, k̃ = 1T ⊗ kξ , (19)

J .
=

⎡⎢⎢⎢⎢⎣
In
A
...

AT−1

AT

⎤⎥⎥⎥⎥⎦ , H =

⎡⎢⎢⎢⎢⎣
0 0 · · · 0
In 0 · · · 0
A In · · · 0
...

...
. . . 0

AT−1 AT−2
· · · In

⎤⎥⎥⎥⎥⎦ . (20)

Remark 4. The above feasibility problem can be modified to minimize the intermediate level M2 subject to a given
equalized recovery level M1 and given missing data language L, which can be easily shown to be a robust linear program
over the decision variables

{
(Q (i), r (i))

}|L|

i=1 and M2.

Since the feasibility problem in (21) contains semi-infinite constraints due to the ‘‘for all" quantifier on the uncertain
terms, the problem is not readily solvable. However, as in [7], techniques from robust optimization and duality [31,32]
can be applied to obtain a linear programming (LP) problem with only finitely many linear constraints. In particular, we
have the following theorem:

Theorem 3 (Robustified Estimator and Controller Synthesis with Missing Data (Prefix-Based)). The feasibility of prefix-based
finite horizon affine estimators and controllers that solve Problem 1 is equivalent to the feasibility of the following linear
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optimization problem:

Find
{
(Q (i), r (i))

}|L|

i=1 ∈ Q(L),
{
(Π (i)

1 , Π
(i)
2 , Π

(i)
3 )

}|L|

i=1
subject to ∀i ∈ [1, |L|], q(i) ∈ L,

Π
(i)
1 ≥ 0, Π

(i)
2 ≥ 0, Π

(i)
3 ≥ 0,

Π
(i)
1

[
ηw1

ηv1

M11

]
≤ M21 −

[
I

−I

]
(Sr (i) + (I + SQ (i)C̄ (i))Hk̃),

Π
(i)
2

[
ηw1

ηv1

M11

]
≤ M11 −

[
I

−I

] [
0n×nT In

]
(Sr (i) + (I + SQ (i)C̄ (i))Hk̃),

Π
(i)
3

[
ηw1

ηv1

M11

]
≤ ηu1 −

[
I

−I

]
(r (i) + Q (i)C̄ (i)Hk̃ + ud),

Π
(i)
1 Pη =

[
I

−I

]
G(i), Π

(i)
2 Pη =

[
I

−I

] [
0n×nT In

]
G(i), Π

(i)
3 Pη =

[
I

−I

]
G̃(i),

(21)

where k̃, J , H and N (i) are as defined in (19) and (20), C̄ (i) and S are as defined in (14), Q(L) is as defined in (15), and

G(i)
=

[
(I + SQ (i)C̄ (i))H SQ (i)N (i) (I + SQ (i)C̄ (i))J

]
,

G̃(i)
=

[
Q (i)C̄ (i)H QN (i) Q (i)C̄ (i)J

]
,

Pη =

⎡⎢⎢⎢⎢⎢⎣
I 0 0

−I 0 0
0 I 0
0 −I 0
0 0 I
0 0 −I

⎤⎥⎥⎥⎥⎥⎦ .

Moreover, if (21) is feasible, then we may invert the mappings in (1) and (2) to obtain:

F (i) .
= (I + Q (i)C̄ (i)S)−1Q (i), (22)

f (i) .
= (I + Q (i)C̄ (i)S)−1r (i), (23)

and we can establish that

1. Each F (i) is block lower triangular;
2. For all λ ∈ Pref (q(i)) ∩ Pref (q(j)), we have BM|λ|(F (i)) = BM|λ|(F (j)) and f (i)k = f (j)k for all k ∈ [1 : |λ|n];
3. A prefix-based estimator or controller solving Problem 1 is defined by

uξ (λ) = f (t, λ) +

t∑
τ=t0

F(t,τ ,λ)yξ (τ ), (24)

where λ ∈
⋃

q(i)∈L Pref (q(i)), t .
= t0 + |λ| − 1, and the matrices F(t,τ ,λ) and f (t, λ) are defined according to (12) and

(13).

5. Discussions

In this section, we discuss how the proposed finite-horizon estimators and controllers can be implemented. We also
highlight the relation between equalized recovery and more familiar notions of detectability and stabilizability.

5.1. Implementation strategies

Assuming that the optimization problems proposed in the previous section have a feasible solution, there are multiple
scenarios in which the estimator or controller can be applied. First, if the problem under consideration is one that is
finite horizon, we can directly use the obtained gains. Second, if the missing data pattern repeats itself with a period of T
time-steps, then the same gains can be used with period T since they guarantee that the recovery period M1 is reached
at the end of the period.

Alternatively, the gains can be used in conjunction with an estimator that guarantees equalized performance or a
controller that guarantees forward invariance of M1 level when there is no missing data. In particular, if we consider
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languages L with words that start with a q(t) = 0, then we can switch from the equalized performance estima-
tor/invariance controller to equalized recovery one whenever a missing measurement occurs and revert back to the
equalized performance estimator/invariance controller after the recovery time T .

In addition, instead of using hypercubes as set templates due to our use of infinity norms, we could also use more
flexible set templates, e.g., zonotopes. The incorporation of such set templates may be done using linear constraints as
described in [33].

5.2. Relationship to detectability and stabilizability

In particular, we state the results in terms of the recent detectability definition for linear systems with data loss
events [9]. Similar results also hold true for stabilizability. Consider a system:

x(t + 1) = Ax(t),

y(t) =

{
Cx(t), q(t) = 1,
∅, q(t) = 0.

(25)

This is the same as the system model in (3) with input and noise terms omitted. We denote a system of the form (25)
subject to a missing data language L ⊆ Bω consisting of infinite words (hence the superscript ω) as (A, C,L). Detectability
of such a system is defined as follows [9]:

Definition 4 (Missing Data Detectability). The system (A, C,L) is said to be detectable if for any (infinite-length) q ∈ L
and any initial state x0 ∈ Rn with y(t, x0, q) = 0 for all t ∈ N, it holds that x(t, x0, q) → 0 as t → ∞, where y(t, x0, q)
and x(t, x0, q) are the output and state, respectively, at time t when the initial state is x0.

In the following, we show that the existence condition for an equalized recovery estimator is a strict superset of
the missing data detectability property defined above. First, we prove that the detectability of a system with missing
data implies that an equalized recovery estimator exists and then, we provide an example where an equalized recovery
estimator exists even when the system is not detectable. The proofs of these propositions are given in Appendix D.

Proposition 4. If a system in the form of (25) with a missing data language L, is detectable according to Definition 4, then
for any recovery level M1 > 0, there exist an intermediate level M2 ≥ M1 and a recovery time T ∈ N such that there exists
an estimator that achieves equalized recovery for the estimation error with these parameters for the missing data language
L′

= {q | |q| = T , q ∈ Pref (L)}.

Moreover, equalized recovery is slightly more general than detectability as stated next.

Proposition 5. The set of discrete-time systems in the form (25) for which an estimator exists whose state estimation error
satisfies equalized recovery is a strict superset of all detectable discrete-time systems with missing data.

6. Examples

In this section, three different examples are used to illustrate important properties of the theory presented above. First,
the improvement of prefix-based estimators over our previous work’s time-based estimation is visualized by revisiting
an example from [7]. Second, prefix-based controllers are utilized to discuss the problem of guaranteeing safety of a
lane-keeping system when its sensors have missing data events. Finally, the scalability of these methods is shown with a
multi-agent tracking problem where a group of followers attempts to follow a leader down a narrow passageway.

6.1. Estimator synthesis

In vehicle safety systems, there are many state estimation problems that must be solved within a finite time horizon
(e.g., a vehicle that would like to understand where other vehicles are on the road before merging into a lane or exiting
the highway). In these situations, a vehicle’s safety (and the safety of its occupants) relies on execution of a maneuver
within a time limit, T , because if a vehicle waits too long, it may miss its opportunity to continue towards its destination
or the lane may end. One method of guaranteeing safety during such a maneuver is to provide bounds on how ‘‘good" the
estimates of the other vehicles in the environment are during the time window. If the maneuver can be executed without
entering any of the sets defined by our bounded error estimates of the other vehicles, then the vehicle can be guaranteed
to be safe.

The Adaptive Cruise Controller is a driver assistance system which controls the acceleration of the user’s car (the ego
car) with two objectives: (i) to maintain a desired speed, if there is no vehicle in front of it, and (ii) to maintain a safe
following distance, if there is a vehicle in front of it. Typically implemented with a radar or computer vision system, the
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Table 1
Constants used in the automatic cruise control (ACC) example.
m 1370 kg Ts 0.5 s
k̄0 7.58 N ηw 0.1
k̄1 9.9407 N s/m ηv 0.05

Fig. 1. Estimation error levels achieved by prefix-based (left) and time-based (right) estimators for the adaptive cruise control system. The minimum
M2 value for which equalized recovery is feasible, with M1 = 1 and T = 6, is found by solving the robust linear program for the prefix-based and
time-based feedback laws. The optimal M2 that the prefix-based feedback can guarantee is M2 = 1.1498 while the optimal M2 that the time-based
feedback can provide is M2 = 2.9864.

adaptive cruise controller is a hybrid controller, but when considering the estimation error system we may analyze only
the following linear system:

ξ (t + 1) = Aξ (t) + ue(t) + Ew(t), w(t) ∈ {w ∈ R3
| ∥w∥ ≤ ηw},

yξ (t) =

{
Cξ (t) + v(t), q(t) = 1,
∅, q(t) = 0,

v(t) ∈ {v ∈ R2
| ∥v∥ ≤ ηv},

(26)

where ξ (t) = [∆ve(t), ∆h(t), ∆vL(t)]T is the estimation error state, consisting of the error in the speed ve of the ego
vehicle, headway h, and speed vL of the lead vehicle. Each matrix in (26) is defined as

A =

⎡⎣ e−κTs 0 0
e−κTs−1

κ
1 Ts

0 0 1

⎤⎦ , C =

[
1 0 0
0 1 0

]
, E =

⎡⎢⎣ 0
T2s
2

Ts

⎤⎥⎦ ,

with κ ≜ k̄1/m. Considering the parameter values selected in Table 1, one can completely define the system above. Then,
when given a missing data language L and a set of parameters M1 and M2, we can pose this in the estimator synthesis
form of Problem 1.

We will discuss the results of synthesis when considering the following language:

L1 =
{
q ∈ B6

⏐⏐ (q[1] = q[6] = 1) ∧ (∃1i ∈ [2, 5] s.t. q[i] = 0)
}

=
{
101111, 110111, 111011, 111101, 111111

}
,

where the symbol ∃1i indicates that there may exist up to one such element i. For this language, the worst-case language
L∗

1 can be found to be L∗

1 = {100001}.
For the language L1 and the recovery level M1 = 1, the minimal value of the intermediate level M2 is found using

Remark 4 and Theorem 3. In contrast, another solution to the problem can be obtained using time-based feedback, the
worst-case language L∗

1, and Theorem 3 via a robust optimization similar to that of (21). From the intuition described in
Section 4, we expect that the prefix-based estimator can in general guarantee tighter estimation error bounds than the
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time-based estimator. A comparison is shown and discussed in more detail within Fig. 1 for the Adaptive Cruise Control
example. In both cases, the system is initialized with random initial conditions and disturbances that satisfy the specified
sets.

The time-based estimator’s optimization required 1999 free variables and 0.2489 s to solve when using Gurobi [34],
while the prefix-based estimator’s optimization required 7993 free variables and 0.3637 s to solve.

6.2. Controller synthesis

Consider an automatic lane-keeping system. In such a system, one can imagine that the system has an estimate (with
bounded error) of the vehicle’s lateral position with respect to the center of the lane. Estimates might come from a
computer vision system or other noisy sensors and thus can be subject to glare or misidentification of lane boundaries.
This is where missing data events can arise.

In this system, instead of making estimates about where the vehicle is, we will try to control it so that it remains near
the center of the lane. The simplified lane keeping model is defined by the following double integrator system:

ξ (t + 1) =

[
0 1
0 −20

]
ξ (t) +

[
0
1

]
u(t) +

[
1
0

]
w(t), w(t) ∈ W .

= {w ∈ R | |w|≤ 0.05}

yξ (t) =

{
ξ (t) + v(t), q(t) = 1,
∅, q(t) = 0,

v(t) ∈ V .
= {v ∈ R2

| ∥v∥ ≤ 0.1},
(27)

where the state ξ (t) = [xc(t), ẋc(t)]T consists of the deviation xc(t) from the centerline of the lane and the lateral velocity
ẋc(t), and the control input u(t) is the lateral force applied through steering.

Again, the trajectory of q(t) is defined by a missing data language L which would come from the properties of the roads
that the autonomous vehicle operates on as well as the specifications of its sensors. With all of the above information,
the problem of guaranteeing safety can be posed as follows: Given that the vehicle state starts near the center of the
lane with near zero lateral velocity, can we design a prefix-based feedback controller such that the vehicle never deviates
outside of the lane boundaries despite missing data events from L?

The formal interpretation of such a problem would be that given some specification of the initial position (i.e., our M1
value), the lane width, along with the disturbance sets W and V and the missing data model L, find a feedback law (9)
such that the decision variable M2 is minimized. If the minimal M2 is below the lane width value, we can guarantee that
the system will not deviate from the center of the lane when using our controller during a missing data event from L.

Consider the system in (27), with the following missing data language:

L2 =

{
q ∈ B12

⏐⏐⏐⏐⏐ ∃1i ∈ [1, 10] s.t.
(q[i] = 0) ∧

(q[i+1] = 0) ∧

((j ̸= i) ∧ (j ̸= i + 1) H⇒ q[j] = 1)

}
.

Let the initial state of the lane keeping system be within an infinity norm ball of radius M1 = 0.3. Given that the
process disturbances come from the set W = {w ∈ R | |w| ≤ 0.05} and the measurement disturbances come from the
set V = {v ∈ R2

| ∥v∥∞ ≤ 0.1}, we synthesize a controller that minimizes the worst case deviation from the center of
the lane. Note that the disturbance set V is overly conservative (most sensors can detect the lane boundaries of a lane to
a precision of 0.01 m), but this is meant to simply show one of the many possible settings that the controller synthesis
framework can handle.

In Fig. 2, we illustrate how some of the trickier initial conditions are handled. The figure contains multiple trajectories.
Each trajectory begins with the same state on the boundary of the M1 norm ball and experiences identical disturbances
from the sets W and V . The aspect that changes between each trajectory is the missing data pattern (which leads to
different prefix-based feedback). One can see that for some of the hardest missing data patterns, the deviation from the
center of the lane gets very close to the edge of our guarantee set (i.e., the boxes of width M2), but always recovers to
the proper level in the end.

This synthesis problem contained 46,773 free variables and was solved after 2.5420 s with Gurobi [34].

6.3. Controller synthesis: Formation control

Finally, we consider the problem of coordinating the movement of a fleet of agents through an obstacle filled
environment. Precisely controlling formations of controlled agents has become very important across multiple domains
including space exploration and disaster relief. For example, when using microsatellites to obtain many spacially
distributed observations during orbit, maintenance of specific formations allows the devices to spend less fuel while
achieving their mission [35]. In these contexts and many others, carefully controlled formations of the fleet make it easier
to achieve a task and decrease the probability of collision with obstacles (e.g., space debris, other satellites).

Unfortunately, while navigating through obstacle-filled fields, localization methods that are based on a relative
navigation sensing system or computer vision algorithms may experience missing measurements. In the following
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Fig. 2. Consider any one of the panels above. In each panel, multiple trajectories of the lane keeping system are visualized, where each trajectory
is initialized at the same state on the M1 = 0.3 hypercube’s boundary and experiences the exact same disturbance (a carefully chosen, maximum
norm disturbance). The only thing that varies across each trajectory is the missing data pattern σ . Thus, what causes the trajectories to diverge is
how the prefix-based controller handles these missing data events when they happen. Regardless of the missing data pattern, it is shown that these
adversarily chosen initial conditions and disturbances can still be guaranteed to return to the desired level M1 and the system achieves equalized
performance.

example, we show how a prefix-based control strategy for formations of such agents can be used to guarantee safe
navigation of a narrow channel while maintaining a formation close to the desired one.

Consider the problem of designing a controller for a set of nr · nc agents with single-integrator dynamics moving in
a two-dimensional plane. The agents seek to align themselves in nr rows and nc columns behind an uncontrolled lead
agent (forming a grid). The rows are defined such that there are nc agents in each row and the space between agents in
a given row is always 2 m. Furthermore, the rows are organized in the y-direction such that they are evenly distributed
between ℓy + 1 and ℓy − 1 where ℓy is the y-component of the leader’s position.

The lead agent is moving with unknown, but bounded actions within the set W = {w ∈ R2
| ∥w∥ ≤ 1.5}. The

following agents’ movement can be defined in terms of error states in the x and y directions, e(i,j)x (t) .
= x(i,j)(t) − x̄(i,j)(t)

and e(i,j)y (t) .
= y(i,j)(t) − ȳ(i,j)(t), representing the difference in the (i, j)-th follower’s x- and y- positions from its desired

formation (i.e., grid) position.
In this work, the formation is maintained by every first agent in the row (any agent with j = 1 observing/sensing the

states of the leader) and all other agents observing/sensing the states of the agent before it (agent j measures the position
of agent j− 1). When the desired states are known to be a constant offset from the leader’s position or positions of other
agents, the system may be written as follows:

e(i,j)x (t + 1) =

{
(u(i,j)

x (t) − wx(t)) · ∆t, j = 1,
(u(i,j)

x (t) − u(i,j−1)
x (t)) · ∆t, otherwise,

e(i,j)y (t + 1) =

{
(u(i,j)

y (t) − wy(t)) · ∆t, j = 1,
(u(i,j)

y (t) − u(i,j−1)
y (t)) · ∆t, otherwise,

ye,i(t) =

⎧⎪⎨⎪⎩
[
e(i,j)x (t)
e(i,j)y (t)

]
+ vi(t), q(t) = 1,

∅, q(t) = 0,

where the discretization step ∆t is 0.1 s, the measurement disturbances vi(t) come from the set V .
= {v ∈ R2

| ∥v∥ ≤ 0.5}
for all i and the input of the (i, j)-th agent as instantaneous speed in the x or y direction is written as u(i,j)

x (t) and u(i,j)
y (t),

respectively.
In Figs. 3 and 4, the followers (black drones) are behind the leader (maize and blue drone) as the leader moves from

left to right through a narrow passage, where localization information is sometimes dropped according to the language
L3:

L3 =

{ 11111111, 01111111,
00111111, 10111111,
01011111, 11011111

}
.
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Fig. 3. A time-based controller using the worst-case language could not guarantee that the followers would safely exit the channel. It can guarantee
that followers (black drones) will remain in the black outline defined by M2 = 2 which overlaps with the red wall (thus collisions may happen).

Table 2
Analysis of the control synthesis time when the number of controlled
agents increases.
Number of followers Solver time (s)

4 (2 × 2 grid formation) 10.9708
9 (3 × 3 grid formation) 37.0226
16 (4 × 4 grid formation) 113.0512

The worst-case language in this case is L∗

3 = {00011111}. A time-based controller using L∗

3 in this channel would have
to adopt an open-loop strategy for the first three time steps and could not guarantee that the followers would avoid
collision (see Fig. 3), but the prefix-based controller maintains the state error within a safe bound throughout the channel
(see Fig. 4).

The 2 × 2 version of this problem contained 1519 free variables and was solved in 10.9708 s with Gurobi [34]. To
illustrate the scalability of our control synthesis method, the solution time for this problem is compared in Table 2,
where the number of following agents is varied. These simulations show that our proposed approach does involve longer
computation times when the number of states are increased. Note, however, that our control synthesis is done offline
and the computation time is thus not a critical limiting factor.

7. Conclusions

In this work, we presented a method for synthesizing bounded-error estimators and constrained controllers for affine
systems that provide equalized recovery guarantees even in the presence of missing data, where the missing data patterns
are constrained by a finite-length language. Our proposed solution leveraged Q -parametrization as well as some additional
structure in our problem to provide the required inputs for estimation or control. We presented both time-based and
prefix-based solutions. While the time-based solution is robust to the worst-case missing data pattern, the prefix-based
solution implicitly estimates the specific missing data pattern (i.e., mode sequence), within the given language, based on
observed history of missing data pattern so far and provides less conservative results. Since both the synthesis problems
are reduced to linear programs, such controllers and estimators can be synthesized very efficiently.

Our current results are for finite horizon problems. Our future work includes developing similar estimators and
controllers for infinite horizon problems where the missing data pattern is given by an automaton that also marks the
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Fig. 4. While in the channel, the system experiences missing data events according to language L3 , but a prefix-based controller can guarantee that
the followers (black drones) will travel through the channel without colliding with either wall (M2 = 1.3 and the black outline does not ever touch
the red wall).

states where recovery level should be achieved. The main difficulty in this case arises from identifying systems and
automata for which a finite memory controller or estimator will be enough to achieve required performance levels.
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Appendix A. Proofs of properties of block lower triangular matrices

Proof of Lemma 1. The first property is a trivial consequence of matrix addition, while the second property follows
directly from multiplication of two block lower triangular matrices. Finally, the third property can be observed from the
identity for partitioned matrix inversion of block lower triangular matrices. □

Proof of Proposition 1. Let C̄0
.
= BMj(C̄ (1)) = BMj(C̄ (2)). We prove both the sufficient and necessary directions:

Sufficiency: Suppose that BMj(F (1)) = BMj(F (2)) = F̃ . Using the fact that C̄ (i), S and F (i) are block lower triangular (and
hence, Q (i) is also block lower triangular) for i ∈ {1, 2} as well as Lemma 1, we have:

BMj(Q (1))
= BMj[F (1)(I − C̄ (1)SF (1))−1

]

= BMj(F (1))(BMj(I) − BMj(C̄ (1))BMj(S)BMj(F (1)))−1

= F̃ (BMj(I) − C̄0BMj(S)F̃ )−1

= BMj(F (2))(BMj(I) − BMj(C̄ (2))BMj(S)BMj(F (2)))−1

= BMj[F (2)(I − C̄ (2)SF (2))−1
]

= BMj(Q (2)).

Necessity: Suppose that BMj(Q (1)) = BMj(Q (2)) = Q̃ . First, we note the (strictly) block lower triangular properties of C̄ (i),
S, Q (i) and F (i). It was shown in [8] that we can solve for F (i), for i ∈ {1, 2} from (1) as:

F (i)
= (I + Q (i)C̄ (i)S)−1Q (i).
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Then, using the fact that C̄ (i), S, Q (i) and F (i) are block lower triangular for i ∈ {1, 2} and Lemma 1, we find that:

BMj(F (1))
= BMj[(I + Q (1)C̄ (1)S)−1Q (1)

]

= (BMj(I) + BMj(Q (1))BMj(C̄ (1))BMj(S))−1BMj(Q (1))
= (BMj(I) + Q̃ C̄0BMj(S))−1Q̃
= (BMj(I) + BMj(Q (2))BMj(C̄ (2))BMj(S))−1BMj(Q (2))
= BMj[(I + Q (2)C̄ (2)S)−1Q (2)

]

= BMj(F (2)). □

Proof of Proposition 2. The proof is similar to Proposition 1. First, consider the forward direction of the proof
(sufficiency):

r (1)1:jn = [(I + Q (1)C̄ (1)S)u(1)
0 ]1:jn

= BMj(I + Q (1)C̄ (1)S)[u(1)
0 ]1:jn

= (BMj(I) + BMj(Q (1))BMj(C̄ (1))BMj(S))[u
(1)
0 ]1:jn

= (BMj(I) + BMj(Q (2))BMj(C̄ (2))BMj(S))[u
(2)
0 ]1:jn

= BMj(I + Q (2)C̄ (2)S)[u(2)
0 ]1:jn

= r (2)1:jn,

where we again applied Lemma 1 and the fact that C̄ (i), S and Q (i) are block lower triangular for i ∈ {1, 2}. The proof of
the opposite direction (necessity) is similar. □

Appendix B. Matrices and sets for estimator and controller synthesis problems

For completeness’ sake, we provide the corresponding matrices and sets for the estimator and controller synthesis
problems in this section.

In the context of estimator synthesis for the system with missing data in (3) using the estimator structure in (4), the
state estimation error system for the state estimation error given by ξ (t) .

= x(t) − x̂(t) can be found to be of the form
in (5) with Bξ

.
= I , uξ (t)

.
= ue(t), kξ

.
= 0, Uξ

.
= Rm, and the transformed output yξ (t)

.
= y(t) − Cx̂(t) when q(t) = 1 and

yξ (t)
.
= ∅ when q(t) = 0, where x̂(t) is known signal that can computed using (4).

On the other hand, the controller synthesis problem for the system with missing data in (3) is one with the system
dynamics of the form in (5) with Bξ

.
= B, kξ

.
= k, uξ (t)

.
= u(t), yξ (t)

.
= y(t) and ξ (t) .

= x(t), as well as Uξ
.
= U . Moreover,

for the tracking control problem with a given desired trajectory xd(t0), xd(t0 + 1), . . . , xd(t0 + T ) and associated desired
inputs ud(t0), ud(t0 +1), . . . , ud(t0 + T −1), the corresponding system dynamics takes the form in (5) with Bξ

.
= B, kξ

.
= 0,

uξ (t)
.
= u(t) − ud(t), yξ (t)

.
= y(t) − Cxd(t) and ξ (t) .

= x(t) − xd(t), as well as Uξ
.
= {uξ (t) ∈ Rm

| uξ (t) + ud(t) ∈ U}.

Appendix C. Proofs of main results

Proof of Theorem 1. This follows directly from Propositions 1 and 2 as well as the invertibility of the mappings (1) and
(2). □

Proof of Theorem 2. For a given prefix-based feedback law {(F (i), u(i)
0 )}|L|

i=1, the transformed state trajectory ξ (i)
=

[ξ (i)(t0)⊺, . . . , ξ (i)(t0 + T )⊺]⊺ under the i-th missing data pattern can be written as a nonlinear function of {(F (i), u(i)
0 )}|L|

i=1
just by plugging in the transformed input term (9). After applying a change of variables via the mapping in Theorem 1,
we can express ξ (i) as a linear function of {(Q (i), r (i))}|L|

i=1 ∈ Q(L) as in (17). Since the equalized recovery condition can
also be written as linear constraints in ξ (i) that should hold for all initial states satisfying M1 bound and for all possible
noise values, problem (21) is a robust linear program, whose feasibility is equivalent to the existence of the desired
estimator/controller. Finally, the gains of the prefix-based feedback law are obtained by applying the inverse of the
mapping in Theorem 1. □

Proof of Theorem 3. In this proof, we will convert the semi-infinite constraints in Theorem 2 into linear constraints by
leveraging the robust optimization approach in [31,32]. Since we will repeat the same robustification process for each
i ∈ [1, |L|] in (16), we will drop the dependence on i in the following.

We first rewrite the infinity norm expressions in (16) as linear inequalities and substitute the expression for ξ in terms
of w, v, ξ (t0) and r using the equations in Theorem 2, as follows:

∥ξ∥ ≤ M2 ⇒

[
I

−I

]
η =

[
I

−I

]
(G

[
w

v

ξ (t0)

]
+ Sr + (I + SQ C̄)Hf̃ ) ≤ M21, (C.1)
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∥RT ξ∥ ≤ M1 ⇒

[
I

−I

]
RTη =

[
I

−I

]
RT (G

[
w

v

ξ (t0)

]
+ Sr + (I + SQ C̄)Hf̃ ) ≤ M11, (C.2)

∥uξ + ud∥ ≤ ηu ⇒

[
I

−I

]
(uξ + ud) =

[
I

−I

]
(G̃

[
w

v

ξ (t0)

]
+ r + Q C̄Hf̃ + ud) ≤ ηu1, (C.3)

∥w∥ ≤ ηw,

∥v∥ ≤ ηv,

∥ξ (t0)∥ ≤ M1,
⇒

⎡⎢⎢⎢⎢⎢⎣
I 0 0

−I 0 0
0 I 0
0 −I 0
0 0 I
0 0 −I

⎤⎥⎥⎥⎥⎥⎦
[

w

v

ξ (t0)

]
≤

[
ηw1

ηv1

M11

]
, (C.4)

where G .
=

[
(I + SQ C̄)H SQN (I + SQ C̄)J

]
, G̃ .

=
[
Q C̄H QN Q C̄J

]
and RT

.
=

[
0n×nT In

]
. Then, leveraging the robust

optimization approach in [31,32], we can convert the constraints of (C.1) and (C.2) ‘‘for all disturbances w, v and ξ (t0)",
i.e., subject to (C.4), into linear constraints with dual matrix variables Π1, Π2 and Π3 for each i ∈ [1, |L|]. □

Appendix D. Detectability related proofs

D.1. Proof of Proposition 4

In this proof, we use an unobservable subspace argument to show that for initial conditions starting in two important
subsets of the state space, equalized recovery parameters can be found and then by a direct sum argument we can
conclude that such parameters can be found for any initial condition in the state space of a detectable system.

First, by assumption, any initial condition in the unobservable subspace x0 ∈ U0(q) asymptotically converges to zero.
Convergence to zero implies that there exists a time t (1) such that the zero estimator (the estimator that always returns
the zero vector) satisfies equalized recovery for time horizon t (1), any recovery level M1, and a finite intermediate level
M2.

Next, note that if there exists a time t ′ such that y(t ′, x0, q) (the output at time t ′ caused by initial condition x0) is
different from the output of any other initial condition, then equalized recovery is feasible. The estimator that achieves
equalized recovery has time horizon t ′, any recovery level, and a finite intermediate level that depends on the dynamics.
By definition, all initial conditions x0 in the orthogonal complement of the unobservable subspace x0 ∈ U0(q)⊥ of (25)
have such a time t (2) or else contradict the definition of U0(q)⊥.

Finally, because any initial condition must be in the direct sum of U0(q) and U0(q)⊥, the proof is complete. For any initial
condition x0 = x′

0 + x′′

0 where x′

0 ∈ U0(q) and x′′

0 ∈ U0(q)⊥, equalized recovery is satisfied with time horizon t (1) + t (2), a
finite intermediate level, and a recovery level dependent on the choice of t (1) and t (2). □

D.2. Proof of Proposition 5

We show that equalized recovery is indeed a superset of detectability by providing a simple example. Consider the
following scalar linear system:

x(t + 1) = x(t),
y(t) = 0.

It is trivial to see that this system does not satisfy detectability according to Definition 4 because x(t, x0, q) for any x0 ̸= 0
does not tend to zero. However, equalized recovery is trivially satisfied for any T , M1 and M2 ≥ M1. □
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